
CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (1) Garcia, Fall 2004 © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 12 – Introduction to MIPS
 Procedures II, Logical and Shift Ops

 2004-09-27

Gotta love Sept/Oct! ⇒
Pennant races heating up!

SF, As trying to make the post-season.
Yankees trying to hold off Boston.
Ichiro soon to beat 84yr hit record!

espn.com/mlb/

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (2) Garcia, Fall 2004 © UCB

Review
• Functions called with jal, return with jr $ra.
• The stack is your friend: Use it to save

anything you need. Just be sure to leave it the
way you found it.
• Instructions we know so far

Arithmetic: add, addi, sub, addu, addiu, subu
Memory: lw, sw
Decision: beq, bne, slt, slti, sltu, sltiu
Unconditional Branches (Jumps): j, jal, jr

• Registers we know so far
• All of them!
• There are CONVENTIONS when calling procedures!

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (3) Garcia, Fall 2004 © UCB

Register Conventions (1/4)
•CalleR: the calling function
•CalleE: the function being called
•When callee returns from executing,
the caller needs to know which
registers may have changed and which
are guaranteed to be unchanged.
•Register Conventions: A set of
generally accepted rules as to which
registers will be unchanged after a
procedure call (jal) and which may be
changed.

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (4) Garcia, Fall 2004 © UCB

Register Conventions (2/4) - saved
•$0: No Change. Always 0.
•$s0-$s7: Restore if you change. Very
important, that’s why they’re called
saved registers. If the callee changes
these in any way, it must restore the
original values before returning.
•$sp: Restore if you change. The stack
pointer must point to the same place
before and after the jal call, or else
the caller won’t be able to restore
values from the stack.
•HINT -- All saved registers start with S!

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (5) Garcia, Fall 2004 © UCB

Register Conventions (3/4) - volatile
•$ra: Can Change. The jal call itself
will change this register. Caller needs
to save on stack if nested call.
•$v0-$v1: Can Change. These will
contain the new returned values.
•$a0-$a3: Can change. These are
volatile argument registers. Caller
needs to save if they’ll need them after
the call.
•$t0-$t9: Can change. That’s why
they’re called temporary: any
procedure may change them at any
time. Caller needs to save if they’ll
need them afterwards.

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (6) Garcia, Fall 2004 © UCB

Register Conventions (4/4)

•What do these conventions mean?
• If function R calls function E, then
function R must save any temporary
registers that it may be using onto the
stack before making a jal call.
• Function E must save any S (saved)
registers it intends to use before garbling
up their values
•Remember: Caller/callee need to save
only temporary/saved registers they are
using, not all registers.

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (7) Garcia, Fall 2004 © UCB

Parents leaving for weekend analogy (1/5)

•Parents (main) leaving for weekend
•They (caller) give keys to the house
to kid (callee) with the rules
(calling conventions):
•You can trash the temporary room(s), like
the den and basement (registers) if
you want, we don’t care about it
•BUT you’d better leave the rooms
(registers) that we want to save for the
guests untouched. “these rooms better
look the same when we return!”

•Who hasn’t heard this in their life?

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (8) Garcia, Fall 2004 © UCB

Parents leaving for weekend analogy (2/5)

•Kid now “owns” rooms (registers)
•Kid wants to use the saved rooms for
a wild, wild party (computation)
•What does kid (callee) do?
•Kid takes what was in these rooms and
puts them in the garage (memory)
•Kid throws the party, trashes everything
(except garage, who goes there?)
•Kid restores the rooms the parents
wanted saved after the party by replacing
the items from the garage (memory) back
into those saved rooms

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (9) Garcia, Fall 2004 © UCB

Parents leaving for weekend analogy (3/5)

•Same scenario, except before parents
return and kid replaces saved rooms…
•Kid (callee) has left valuable stuff
(data) all over.
•Kid’s friend (another callee) wants the
house for a party when the kid is away
•Kid knows that friend might trash the
place destroying valuable stuff!
•Kid remembers rule parents taught and
now becomes the “heavy” (caller),
instructing friend (callee) on good rules
(conventions) of house.

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (10) Garcia, Fall 2004 © UCB

Parents leaving for weekend analogy (4/5)

• If kid had data in temporary rooms
(which were going to be trashed),
there are three options:
•Move items directly to garage (memory)
•Move items to saved rooms whose
contents have already been moved to the
garage (memory)
•Optimize lifestyle (code) so that the
amount you’ve got to shlep stuff back
and forth from garage (memory) is
minimized

•Otherwise: “Dude, where’s my data?!”

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (11) Garcia, Fall 2004 © UCB

Parents leaving for weekend analogy (5/5)

•Friend now “owns” rooms (registers)
•Friend wants to use the saved rooms
for a wild, wild party (computation)
•What does friend (callee) do?
• Friend takes what was in these rooms and
puts them in the garage (memory)
• Friend throws the party, trashes
everything (except garage)
• Friend restores the rooms the kid wanted
saved after the party by replacing the
items from the garage (memory) back into
those saved rooms

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (12) Garcia, Fall 2004 © UCB

 Administrivia

•Project 1 due Friday @ 23:59

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (13) Garcia, Fall 2004 © UCB

Bitwise Operations

• Up until now, we’ve done arithmetic (add,
sub,addi), memory access (lw and sw),
and branches and jumps.
• All of these instructions view contents of

register as a single quantity (such as a
signed or unsigned integer)
• New Perspective: View register as 32 raw

bits rather than as a single 32-bit number
• Since registers are composed of 32 bits, we

may want to access individual bits (or
groups of bits) rather than the whole.
• Introduce two new classes of instructions:

• Logical & Shift Ops

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (14) Garcia, Fall 2004 © UCB

Logical Operators (1/3)

•Two basic logical operators:
•AND: outputs 1 only if both inputs are 1
•OR: outputs 1 if at least one input is 1

•Truth Table: standard table listing all
possible combinations of inputs and
resultant output for each. E.g.,

 A B A AND B A OR B
0 0
0 1
1 0
1 1

0
1
1
1

0
0
0
1

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (15) Garcia, Fall 2004 © UCB

Logical Operators (2/3)
•Logical Instruction Syntax:

1 2,3,4
•where

1) operation name
2) register that will receive value
3) first operand (register)
4) second operand (register) or

immediate (numerical constant)
• In general, can define them to accept >
2 inputs, but in the case of MIPS
assembly, these accept exactly 2
inputs and produce 1 output
•Again, rigid syntax, simpler hardware

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (16) Garcia, Fall 2004 © UCB

Logical Operators (3/3)
• Instruction Names:

•and, or: Both of these expect the third
argument to be a register
•andi, ori: Both of these expect the third
argument to be an immediate

•MIPS Logical Operators are all bitwise,
meaning that bit 0 of the output is
produced by the respective bit 0’s of
the inputs, bit 1 by the bit 1’s, etc.
•C: Bitwise AND is & (e.g., z = x & y;)
•C: Bitwise OR is | (e.g., z = x | y;)

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (17) Garcia, Fall 2004 © UCB

Uses for Logical Operators (1/3)
•Note that anding a bit with 0 produces a 0
at the output while anding a bit with 1
produces the original bit.
•This can be used to create a mask.
•Example:

1011 0110 1010 0100 0011 1101 1001 1010
0000 0000 0000 0000 0000 1111 1111 1111

• The result of anding these:
0000 0000 0000 0000 0000 1101 1001 1010

mask:

mask last 12 bits

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (18) Garcia, Fall 2004 © UCB

Uses for Logical Operators (2/3)

•The second bitstring in the example is
called a mask. It is used to isolate the
rightmost 12 bits of the first bitstring
by masking out the rest of the string
(e.g. setting it to all 0s).
•Thus, the and operator can be used to
set certain portions of a bitstring to
0s, while leaving the rest alone.
• In particular, if the first bitstring in the
above example were in $t0, then the
following instruction would mask it:
andi $t0,$t0,0xFFF

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (19) Garcia, Fall 2004 © UCB

Uses for Logical Operators (3/3)

•Similarly, note that oring a bit with 1
produces a 1 at the output while oring
a bit with 0 produces the original bit.
•This can be used to force certain bits
of a string to 1s.
• For example, if $t0 contains
0x12345678, then after this instruction:
ori $t0, $t0, 0xFFFF

•… $t0 contains 0x1234FFFF (e.g. the
high-order 16 bits are untouched, while
the low-order 16 bits are forced to 1s).

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (20) Garcia, Fall 2004 © UCB

Shift Instructions (1/4)
•Move (shift) all the bits in a word to the
left or right by a number of bits.
•Example: shift right by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110
•Example: shift left by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0011 0100 0101 0110 0111 1000 0000 0000

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (21) Garcia, Fall 2004 © UCB

Shift Instructions (2/4)

• Shift Instruction Syntax:
1 2,3,4
• where

1) operation name
2) register that will receive value
3) first operand (register)
4) shift amount (constant < 32)

•MIPS shift instructions:
1. sll (shift left logical): shifts left and fills

emptied bits with 0s
2. srl (shift right logical): shifts right and fills

emptied bits with 0s
3. sra (shift right arithmetic): shifts right and fills

emptied bits by sign extending

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (22) Garcia, Fall 2004 © UCB

Shift Instructions (3/4)
•Example: shift right arith by 8 bits

0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

•Example: shift right arith by 8 bits
1001 0010 0011 0100 0101 0110 0111 1000

1111 1111 1001 0010 0011 0100 0101 0110

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (23) Garcia, Fall 2004 © UCB

Shift Instructions (4/4)

•Since shifting may be faster than
multiplication, a good compiler
usually notices when C code
multiplies by a power of 2 and
compiles it to a shift instruction:
a *= 8; (in C)
would compile to:
sll $s0,$s0,3 (in MIPS)

•Likewise, shift right to divide by
powers of 2
• remember to use sra

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (24) Garcia, Fall 2004 © UCB

What does r have to push on the stack before “jal e”?

1: Nothing
2: 1 of ($s0,$sp,$v0,$t0,$a0,$ra)
3: 2 of ($s0,$sp,$v0,$t0,$a0,$ra)
4: 3 of ($s0,$sp,$v0,$t0,$a0,$ra)
5: 4 of ($s0,$sp,$v0,$t0,$a0,$ra)
6: 5 of ($s0,$sp,$v0,$t0,$a0,$ra)

Peer Instruction
r: ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem
 ... ### PUSH REGISTER(S) TO STACK?
 jal e # Call e
 ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem
 jr $ra # Return to caller of r

e: ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem
 jr $ra # Return to r

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (25) Garcia, Fall 2004 © UCB

What does r have to push on the stack before “jal e”?

1: Nothing
2: 1 of ($s0,$sp,$v0,$t0,$a0,$ra)
3: 2 of ($s0,$sp,$v0,$t0,$a0,$ra)
4: 3 of ($s0,$sp,$v0,$t0,$a0,$ra)
5: 4 of ($s0,$sp,$v0,$t0,$a0,$ra)
6: 5 of ($s0,$sp,$v0,$t0,$a0,$ra)

Peer Instruction Answer
r: ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem
 ... ### PUSH REGISTER(S) TO STACK?
 jal e # Call e
 ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem
 jr $ra # Return to caller of r

e: ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem
 jr $ra # Return to r

Volatile! -- need to pushSaved

e can’t return changed,
 no need to push

e can return changed

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (26) Garcia, Fall 2004 © UCB

“And in Conclusion…”
• Register Conventions: Each register has a

purpose and limits to its usage. Learn
these and follow them, even if you’re writing
all the code yourself.
• Logical and Shift Instructions

• Operate on bits individually, unlike arithmetic,
which operate on entire word.
• Use to isolate fields, either by masking or by

shifting back and forth.
• Use shift left logical, sll,for multiplication by

powers of 2
• Use shift right arithmetic, sra,for division by

powers of 2.
• New Instructions:
and,andi, or,ori, sll,srl,sra

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (27) Garcia, Fall 2004 © UCB

Example: Fibonacci Numbers 1/8

•The Fibonacci numbers are defined as
follows: F(n) = F(n – 1) + F(n – 2),
F(0) and F(1) are defined to be 1
• In scheme, this could be written:
(define (Fib n)
(cond ((= n 0) 1)

 ((= n 1) 1)
(else (+ (Fib (- n 1))

(Fib (- n 2)))))

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (28) Garcia, Fall 2004 © UCB

Example: Fibonacci Numbers 2/8

•Rewriting this in C we have:
int fib(int n) {
 if(n == 0) { return 1; }
 if(n == 1) { return 1; }
 return (fib(n - 1) + fib(n - 2));

}

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (29) Garcia, Fall 2004 © UCB

fib:

Space for three words
Save the return address
Save $s0

addi $sp, $sp, -12

sw $ra, 8($sp)

sw $s0, 4($sp)

°Now, let’s translate this to MIPS!
°You will need space for three words on the

stack
°The function will use one $s register, $s0
°Write the Prologue:

Example: Fibonacci Numbers 3/8

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (30) Garcia, Fall 2004 © UCB

fin:

jr $ra_____________

lw $s0, 4($sp)

lw $ra, 8($sp)

addi $sp, $sp, 12

Restore $s0
Restore return address
Pop the stack frame
Return to caller

°Now write the Epilogue:

Example: Fibonacci Numbers 4/8

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (31) Garcia, Fall 2004 © UCB

beq $a0 $zero

beq $a0 $t0

addi $v0, $zero, 1_

_______, _____,_fin

addi $t0, $zero, 1_

_______,______,_fin

Continued on next slide. . .

$v0 = 1
#
$t0 = 1
#

° Finally, write the body. The C code is below. Start
by translating the lines indicated in the comments

int fib(int n) {
if(n == 0) { return 1; } /*Translate Me!*/
if(n == 1) { return 1; } /*Translate Me!*/
return (fib(n - 1) + fib(n - 2));

}

__if (n == 0). . .

______ ____________

__if (n == 1). . .

Example: Fibonacci Numbers 5/8

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (32) Garcia, Fall 2004 © UCB

 $a0 0($sp)

jal fib

 $a0 0($sp)

 $a0, -1

Continued on next slide. . .

__Need $a0 after jal

_ fib(n – 1) ______

__Restore $a0______

__$a0 = n – 2_________

$a0 = n - 1
#
#
#
#

addi $a0, $a0, -1__

sw____, ___________

lw____,____________

addi $a0, ___,_____

° Almost there, but be careful, this part is tricky!
int fib(int n) {
. . .
return (fib(n - 1) + fib(n - 2));

}

Example: Fibonacci Numbers 6/8

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (33) Garcia, Fall 2004 © UCB

add $s0,____,______

add $v0, $v0, $s0__

To the epilogue and beyond. . .

_______ $v0 $zero

jal fib

Place fib(n – 1)
somewhere it won’t get
clobbered
#
#

__fib(n – 2) __________
__$v0 = fib(n-1) + fib(n-2)

° Remember that $v0 is caller saved!
int fib(int n) {
. . .
return (fib(n - 1) + fib(n - 2));

}

Example: Fibonacci Numbers 7/8

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (34) Garcia, Fall 2004 © UCB

° Here’s the complete code for reference:

Example: Fibonacci Numbers 8/8

fib:

addi $sp, $sp, -12

sw $ra, 8($sp)

sw $s0, 4($sp)

addi $v0, $zero, 1

beq $a0, $zero, fin

addi $t0, $zero, 1

beq $a0, $t0, fin

addi $a0, $a0, -1

sw $a0, 0($sp)

jal fib

lw $a0, 0($sp)

addi $a0, $a0, -1

add $s0, $v0, $zero

jal fib

add $v0, $v0, $s0

fin:

lw $s0, 4($sp)

lw $ra, 8($sp)

addi $sp, $sp, 12

jr $ra

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (35) Garcia, Fall 2004 © UCB

BONUS: Uses for Shift Instructions (1/4)

•Suppose we want to isolate byte 0
(rightmost 8 bits) of a word in $t0.
Simply use:

andi $t0,$t0,0xFF

•Suppose we want to isolate byte 1
(bit 15 to bit 8) of a word in $t0. We
can use:

 andi $t0,$t0,0xFF00

but then we still need to shift to the
right by 8 bits...

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (36) Garcia, Fall 2004 © UCB

BONUS: Uses for Shift Instructions (2/4)
•Could use instead:

sll $t0,$t0,16
srl $t0,$t0,24

0001 0010 0011 0100 0101 0110 0111 1000

0101 0110 0111 1000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0101 0110

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (37) Garcia, Fall 2004 © UCB

BONUS: Uses for Shift Instructions (3/4)
• In decimal:
•Multiplying by 10 is same as shifting left
by 1:
- 71410 x 1010 = 714010

- 5610 x 1010 = 56010

•Multiplying by 100 is same as shifting left
by 2:
- 71410 x 10010 = 7140010

- 5610 x 10010 = 560010

•Multiplying by 10n is same as shifting left
by n

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (38) Garcia, Fall 2004 © UCB

BONUS: Uses for Shift Instructions (4/4)
• In binary:
•Multiplying by 2 is same as shifting left
by 1:
- 112 x 102 = 1102

- 10102 x 102 = 101002

•Multiplying by 4 is same as shifting left
by 2:
- 112 x 1002 = 11002

- 10102 x 1002 = 1010002

•Multiplying by 2n is same as shifting left
by n

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (39) Garcia, Fall 2004 © UCB

Bonus Example: Compile This (1/5)
main() {
int i,j,k,m; /* i-m:$s0-$s3 */
...
i = mult(j,k); ...
m = mult(i,i); ...

}

int mult (int mcand, int mlier){
int product;

 product = 0;
while (mlier > 0) {
 product += mcand;
 mlier -= 1; }
return product;
}

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (40) Garcia, Fall 2004 © UCB

Bonus Example: Compile This (2/5)
__start:

add $a0,$s1,$0 # arg0 = j
add $a1,$s2,$0 # arg1 = k
jal mult # call mult
add $s0,$v0,$0 # i = mult()
...
 add $a0,$s0,$0 # arg0 = i
add $a1,$s0,$0 # arg1 = i
jal mult # call mult
add $s3,$v0,$0 # m = mult()
...

done
main() {
int i,j,k,m; /* i-m:$s0-$s3 */
...
i = mult(j,k); ...
m = mult(i,i); ... }

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (41) Garcia, Fall 2004 © UCB

Bonus Example: Compile This (3/5)

•Notes:
•main function ends with done, not
jr $ra, so there’s no need to save $ra
onto stack
• all variables used in main function are
saved registers, so there’s no need to
save these onto stack

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (42) Garcia, Fall 2004 © UCB

Bonus Example: Compile This (4/5)
mult:

add $t0,$0,$0 # prod=0
Loop:
 slt $t1,$0,$a1 # mlr > 0?
 beq $t1,$0,Fin # no=>Fin
 add $t0,$t0,$a0 # prod+=mc
 addi $a1,$a1,-1 # mlr-=1
 j Loop # goto Loop

Fin:
 add $v0,$t0,$0 # $v0=prod
 jr $ra # return

int mult (int mcand, int mlier){
int product = 0;
while (mlier > 0) {
 product += mcand;
 mlier -= 1; }
return product;
}

CS 61C L12 Introduction to MIPS: Procedures II, logical & shift ops (43) Garcia, Fall 2004 © UCB

Bonus Example: Compile This (5/5)

•Notes:
• no jal calls are made from mult and we
don’t use any saved registers, so we
don’t need to save anything onto stack
• temp registers are used for intermediate
calculations (could have used s
registers, but would have to save the
caller’s on the stack.)
•$a1 is modified directly (instead of
copying into a temp register) since we
are free to change it
• result is put into $v0 before returning
(could also have modified $v0 directly)

