inst.eecs.berkeley.edu/~cs61c

CS61C : Machine Structures

Lecture 15 - Floating Point I

2004-10-04 (good buddy)

Lecturer PSOE Dan Garcia

www. cs.berkeley . edu/~ddgarcia

Bring on USC...game on! \Rightarrow Cal romps over Oregon St to go 3-0 (\#7!) in preparation to face USC on Saturday at 4-0. We lead NATION in Div IA scoring \& passing efficiency! If we win,

Caland we can, it will be HUGE...surreal!

calbears.collegesports.com/sports/m-footbl/spec-rel/100304aad.html CS 61C L15 Floating Point I (1)

Quote of the day

" 95% of the folks out there are completely clueless about floating-point."

James Gosling Sun Fellow Java Inventor 1998-02-28

Review of Numbers

- Computers are made to deal with numbers

- What can we represent in N bits?
- Unsigned integers:

$$
0 \text { to } 2^{N}-1
$$

- Signed Integers (Two's Complement)

$$
-2^{(N-1)} \quad \text { to } \quad 2^{(N-1)}-1
$$

Other Numbers

- What about other numbers?
- Very large numbers? (seconds/century) $3,155,760,000_{10}\left(3.15576_{10} \times 10^{9}\right)$
- Very small numbers? (atomic diameter) $0.00000001_{10}\left(1.0_{10} \times 10^{-8}\right)$
- Rationals (repeating pattern)

2/3
(0.666666666. . .)

- Irrationals
$2^{1 / 2}$
(1.414213562373. . .)
- Transcendentals e (2.718...), π (3.141...)

ll represented in scientific notation

Scientific Notation (in Decimal)

- Normalized form: no leadings 0s (exactly one digit to left of decimal point)
- Alternatives to representing 1/1,000,000,000
- Normalized: 1.0×10^{-9}
- Not normalized:
$0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

Scientific Notation (in Binary)

- Computer arithmetic that supports it called floating point, because it represents numbers where binary point is not fixed, as it is for integers
- Declare such variable in C as float

Floating Point Representation (1/2)

- Normal format: +1.xxxxxxxxxx ${ }_{\text {two }}{ }^{* 2}{ }^{\text {yyyy }}{ }^{\text {two }}$ - Multiple of Word Size (32 bits)

- S represents Sign

Exponent represents y's Significand represents x's

- Represent numbers as small as 2.0×10^{-38} to as large as 2.0×10^{38}

Floating Point Representation (2/2)

- What if result too large? (>2.0×10 ${ }^{38}$)
- Overflow!
- Overflow \Rightarrow Exponent larger than represented in 8-bit Exponent field
-What if result too small? ($>0,<2.0 \times 10^{-38}$)
- Underflow!
- Underflow \Rightarrow Negative exponent larger than represented in 8-bit Exponent field
- How to reduce chances of overflow or underflow?

Double Precision FI. Pt. Representation

- Next Multiple of Word Size (64 bits)
3130

S	Exponent	Significand
1 bit	11 bits	20 bits
Significand (cont'd)		

32 bits

- Double Precision (vs. Single Precision)
- C variable declared as double
- Represent numbers almost as small as 2.0×10^{-308} to almost as large as 2.0×10^{308}
- But primary advantage is greater accuracy due to larger significand

QUAD Precision FI. Pt. Representation

- Next Multiple of Word Size (128 bits)
- Unbelievable range of numbers
- Unbelievable precision (accuracy)
- This is currently being worked on

IEEE 754 Floating Point Standard (1/4)

- Single Precision, DP similar
- Sign bit:

1 means negative
0 means positive

- Significand:
- To pack more bits, leading 1 implicit for normalized numbers
$-1+23$ bits single, $1+52$ bits double
- always true: Significand < 1
(for normalized numbers)
- Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

IEEE 754 Floating Point Standard (2/4)

- Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares
- Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands
- Wanted it to be faster, single compare if possible, especially if positive numbers
-Then want order:
- Highest order bit is sign (negative < positive)
- Exponent next, so big exponent => bigger \#

Cal Significand last: exponents same => bigger \#

IEEE 754 Floating Point Standard (3/4)

- Negative Exponent?
- 2's comp? 1.0×2^{-1} v. $1.0 \times 2^{+1}(1 / 2 \mathrm{v} .2)$

2 | 0 | 00000001 | 00000000000000000000000 |
| :---: | :---: | :---: |

- This notation using integer compare of $1 / 2 \mathrm{v}$. 2 makes $1 / 2>2$!
- Instead, pick notation 00000001 is most negative, and 11111111 is most positive

$$
\cdot 1.0 \times 2^{-1} \text { v. } 1.0 \times 2^{+1}(1 / 2 \text { v. 2) }
$$

$1 / 2$	0	01111110	00000000000000000000000

0	10000000	00000000000000000000000

IEEE 754 Floating Point Standard (4/4)

- Called Biased Notation, where bias is number subtract to get real number
- IEEE 754 uses bias of 127 for single prec.
- Subtract 127 from Exponent field to get actual value for exponent
- 1023 is bias for double precision
- Summary (single precision):

| 3130 | | |
| :---: | :---: | :---: | :---: |
| S\| Exponent | Significand | |

1 bit 8 bits 23 bits
$\cdot(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times 2^{\text {(Exponent-127) }}$

- Double precision identical, except with exponent bias of 1023
CS 61C L15 Floating Point I (14)

"Father" of the Floating point standard

IEEE Standard 754 for Binary Floating-Point Arithmetic.

Prof. Kahan

www.cs.berkeley.edu/~wkahan/
.../ieee754status/754story.html

Administrivia....Midterm in 2 weeks!

- Midterm 1 Pimintel Mon 2004-10-18 @ 7-10pm
- Conflicts/DSP? Email Head TA Andy, cc Dan
- How should we study for the midterm?
- Form study groups -- don't prepare in isolation!
- Attend the review session (2004-10-17 @ 2pm in 10 Evans)
- Look over HW, Labs, Projects
- Write up your 1-page study sheet
- Go over old exams - HKN office has put them online (link from 61C home page)
- Dan will release some of his old midterms this week to use as a study aid (to HKN)
- We won't have faux exams this year...

Upcoming Calendar

Week \#	Mon	Wed	Thurs Lab	Fri
\#6	Floating Pt I	Floating Pt II	Floating Pt	MIPS Inst Format III
\#7	Running Next week	Running Program	Running Program	Caches
\#8	Caches	Caches	Caches	Caches Midterm Midterm week
Midterm @ 7pm			gradles out	

Understanding the Significand (1/2)

- Method 1 (Fractions):
- In decimal: $0.340_{10}=>340_{10} / 1_{1000} 10$ $=>34_{10} / 100_{10}$
- In binary: $0.110_{2} \Rightarrow 110_{2} / 1000_{2}=6_{10} / 8_{10}$ $\Rightarrow 11_{2} / 100_{2}=310 / 4_{10}$
- Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

Understanding the Significand (2/2)

- Method 2 (Place Values):
- Convert from scientific notation
- In decimal: $1.6732=\left(1 \times 10^{0}\right)+\left(6 \times 10^{-1}\right)+$ $\left(7 \times 10^{-2}\right)+\left(3 \times 10^{-3}\right)+\left(2 \times 10^{-4}\right)$
- In binary: $\quad 1.1001=\left(1 \times 2^{0}\right)+\left(1 \times 2^{-1}\right)+$ $\left(0 \times 2^{-2}\right)+\left(0 \times 2^{-3}\right)+\left(1 \times 2^{-4}\right)$
- Interpretation of value in each position extends beyond the decimal/binary point
- Advantage: good for quickly calculating significand value; use this method for translating FP numbers

Example: Converting Binary FP to Decimal

- Sign: 0 => positive
- Exponent:
- $01101000_{\text {two }}=104_{\text {ten }}$
- Bias adjustment: $104-127=-23$
- Significand:

$$
\begin{aligned}
& \cdot 1+1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+0 \times 2^{-4}+1 \times 2^{-5}+\ldots \\
& =1+2^{-1}+2^{-3}+2^{-5}+2^{-7}+2^{-9}+2^{-14}+2^{-15}+2^{-17}+2^{-22} \\
& =1.0_{\text {ten }}+0.666115_{\text {ten }}
\end{aligned}
$$

- Represents: $1.666115_{\text {ten }}{ }^{*} 2^{-23} \sim 1.986^{*} 10^{-7}$
(about 2/10,000,000)

Converting Decimal to FP (1/3)

- Simple Case: If denominator is an exponent of $2(2,4,8,16$, etc.), then it's easy.
- Show MIPS representation of $\mathbf{- 0 . 7 5}$
- $-0.75=-3 / 4$
$--11_{\mathrm{two}} / 100_{\mathrm{two}}=-0.11_{\mathrm{two}}$
- Normalized to $-1.1_{\text {two }} \times \mathbf{2}^{-1}$
$\cdot(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times 2^{\text {(Exponent-127) }}$
$\cdot(-1)^{1} \times(1+.1000000 \ldots 0000) \times 2^{(126-127)}$
$1|01111110| 10000000000000000000000$

Converting Decimal to FP (2/3)

- Not So Simple Case: If denominator is not an exponent of 2.
- Then we can't represent number precisely, but that's why we have so many bits in significand: for precision
- Once we have significand, normalizing a number to get the exponent is easy.
- So how do we get the significand of a neverending number?

Converting Decimal to FP (3/3)

- Fact: All rational numbers have a repeating pattern when written out in decimal.
- Fact: This still applies in binary.
-To finish conversion:
- Write out binary number with repeating pattern.
- Cut it off after correct number of bits (different for single v . double precision).
- Derive Sign, Exponent and Significand fields.

Peer Instruction

"And in conclusion..."

- Floating Point numbers approximate values that we want to use.
- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers
- Every desktop or server computer sold since ~1997 follows these conventions
- Summary (single precision):
$3130 \quad 2322$

S	Exponent	Significand

1 bit 8 bits 23 bits
$\cdot(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times 2^{\text {(Exponent-127) }}$

- Double precision identical, bias of 1023

CS 61C L15 Floating Point I (26)

