inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures

Lecture 16 - Floating Point II

2004-10-06

Lecturer PSOE Dan Garcia

WWW . cs . berkeley . edu/~ddgarcia

VP debate... \Rightarrow

Cheney \& Edwards took off their gloves and both came out strong. Will you just answer the question, please? Both are seasoned orators...

CS 61C L16 : Floating Point II (1)
Garcia, Fall 2004 © UCB

Example: Representing $1 / 3$ in MIPS

-1/3
$=0.33333 \ldots_{10}$
$=0.25+0.0625+0.015625+0.00390625+\ldots$
$=1 / 4+1 / 16+1 / 64+1 / 256+\ldots$
$=2^{-2}+2^{-4}+2^{-6}+2^{-8}+\ldots$
$=0.0101010101 \ldots{ }^{*}{ }^{0}{ }^{0}$
$=1.0101010101 \ldots{ }_{2}^{*} 2^{-2}$

- Sign: 0
- Exponent $=-2+127=125=01111101$
- Significand $=0101010101 \ldots$

CS 61C L16: Foating Point II (3)

Representation for $\pm \infty$

- In FP, divide by 0 should produce $\pm \infty$, not overflow.
-Why?
- OK to do further computations with ∞ E.g., X/O > Y may be a valid comparison
- Ask math majors
- IEEE 754 represents $\pm \infty$
- Most positive exponent reserved for ∞
- Significands all zeroes

Representation for 0

- Represent 0?
- exponent all zeroes
- significand all zeroes too
- What about sign?
-+0: 00000000000000000000000000000000
--0: 10000000000000000000000000000000
-Why two zeroes?
- Helps in some limit comparisons
- Ask math majors

Special Numbers

-What have we defined so far? (Single Precision)

Exponent	Significand	Object
0	0	0
0	$\underline{\text { nonzero }}$	$\underline{? ? ?}$
$1-254$	anything	$+/-$ fl. pt. \#
255	0	$+/-\infty$
255	nonzero	$\underline{? ? ?}$

- Professor Kahan had clever ideas; "Waste not, want not"
- Exp=0,255 \& Sig!=0 ...

Representation for Not a Number

-What is sqrt (-4.0) or 0/0?

- If ∞ not an error, these shouldn't be either.
- Called Not a Number (NaN)
- Exponent = 255, Significand nonzero
- Why is this useful?
- Hope NaNs help with debugging?
- They contaminate: $\mathrm{op}(\mathrm{NaN}, \mathrm{X})=\mathrm{NaN}$

Representation for Denorms (1/2)

- Problem: There's a gap among representable FP numbers around 0
- Smallest representable pos num:

$$
a=1.0 \ldots 2^{*} 2^{-126}=2^{-126}
$$

- Second smallest representable pos num:

$$
\begin{aligned}
& b=1.000 \ldots \ldots 2_{2}^{*} 2^{-126}=2^{-126}+2^{-149} \\
& \mathrm{a}-0=\mathbf{2 - 1 2 6}^{-126} \\
& b-a=2-149
\end{aligned}
$$

Normalization and implicit 1 is to blame!
$R Q$ answer!

Representation for Denorms (2/2)

-Solution:

- We still haven't used Exponent = 0, Significand nonzero
- Denormalized number: no leading 1, implicit exponent =-126.
- Smallest representable pos num:

$$
a=2^{-149}
$$

- Second smallest representable pos num: $b=2^{-148}$

Rounding

- Math on real numbers \Rightarrow we worry about rounding to fit result in the significant field.

RQ answer!

- FP hardware carries 2 extra bits of precision, and rounds for proper value
- Rounding occurs when converting...
- double to single precision
- floating point \# to an integer

IEEE Four Rounding Modes

-Round towards + ∞

- ALWAYS round "up": $2.1 \Rightarrow 3,-2.1 \Rightarrow-2$
-Round towards - ∞
-ALWAYS round "down": $1.9 \Rightarrow 1,-1.9 \Rightarrow-2$
-Truncate
- Just drop the last bits (round towards 0)
- Round to (nearest) even (default)
- Normal rounding, almost: $2.5 \Rightarrow 2,3.5 \Rightarrow 4$
- Like you learned in grade school
- Insures fairness on calculation
- Half the time we round up, other half down

Integer Multiplication (1/3)

- Paper and pencil example (unsigned):

Multiplicand1000 Multiplier	8
$\frac{x 1001}{1000}$	9
0000	
0000	
+1000	
01001000	

- m bits x n bits $=\mathrm{m}+\mathrm{n}$ bit product

Integer Multiplication (2/3)

- In MIPS, we multiply registers, so:
- 32 -bit value x 32 -bit value $=64$-bit value
-Syntax of Multiplication (signed):
- mult register1, register2
- Multiplies 32-bit values in those registers \& puts 64-bit product in special result regs:
- puts product upper half in hi, lower half in lo
- hi and lo are 2 registers separate from the 32 general purpose registers
- Use mfhi register \& mflo register to move from hi, lo to another register

Integer Multiplication (3/3)

- Example:
- in C: a = b * c;
- in MIPS:
- let b be \$s2; let c be \$s3; and let a be \$s0 and $\$ s 1$ (since it may be up to 64 bits)
mult \$s2,\$s3 \# b*c
mfhi \$s0 \# upper half of
\# product into $\$ s 0$
mflo \$s1
\# lower half of
\# product into \$s1
- Note: Often, we only care about the lower half of the product.

Integer Division (1/2)

- Paper and pencil example (unsigned):

$$
\text { Divisor } 1000 \frac{1001}{1001010} \text { Quotient } \begin{gathered}
\text { Dividend } \\
-\frac{1000}{10} \\
101 \\
1010 \\
-\frac{1000}{10} \text { Remainder } \\
\text { (or Modulo result) }
\end{gathered}
$$

- Dividend = Quotient x Divisor + Remainder

Integer Division (2/2)

-Syntax of Division (signed):

- div register1, register2
- Divides 32-bit register 1 by 32-bit register 2:
- puts remainder of division in hi, quotient in lo
- Implements C division (/) and modulo (\%)
- Example in C: $\mathrm{a}=\mathrm{c} / \mathrm{d}$;

$$
\mathrm{b}=\mathrm{c} \% \mathrm{~d}
$$

- in MIPS: $a \leftrightarrow \$ s 0 ; b \leftrightarrow \$ s 1 ; c \leftrightarrow \$ s 2 ; d \leftrightarrow \$ s 3$

$$
\begin{array}{ll}
\text { div } \$ s 2, \$ s 3 & \text { \# lo=c/d, hi=c\%d } \\
\text { mflo \$s0 } & \text { \# get quotient } \\
\text { mfhi \$s1 } & \text { \# get remainder }
\end{array}
$$

Unsigned Instructions \& Overflow

- MIPS also has versions of mult, div for unsigned operands:
multu
divu
- Determines whether or not the product and quotient are changed if the operands are signed or unsigned.
- MIPS does not check overflow on ANY signed/unsigned multiply, divide instr
- Up to the software to check hi

FP Addition \& Subtraction

- Much more difficult than with integers (can't just add significands)
- How do we do it?
- De-normalize to match larger exponent
- Add significands to get resulting one
- Normalize (\& check for under/overflow)
- Round if needed (may need to renormalize)
- If signs \neq, do a subtract. (Subtract similar)
- If signs \neq for add (or = for sub), what's ans sign?
- Question: How do we integrate this into the integer arithmetic unit? [Answer: We don't!]

MIPS Floating Point Architecture (1/4)

-Separate floating point instructions:

- Single Precision: add.s, sub.s, mul.s, div.s
- Double Precision: add.d, sub.d, mul.d, div.d
-These are far more complicated than their integer counterparts
- Can take much longer to execute

MIPS Floating Point Architecture (2/4)

- Problems:
- Inefficient to have different instructions take vastly differing amounts of time.
- Generally, a particular piece of data will not change FP \Leftrightarrow int within a program.
- Only 1 type of instruction will be used on it.
- Some programs do no FP calculations
- It takes lots of hardware relative to integers to do FP fast

MIPS Floating Point Architecture (3/4)

- 1990 Solution: Make a completely separate chip that handles only FP.
- Coprocessor 1: FP chip
- contains 32 32-bit registers: \$f0, \$f1, ...
- most of the registers specified in .s and .d instruction refer to this set
- separate load and store: lwc1 and swc1 ("load word coprocessor 1", "store ...")
- Double Precision: by convention, even/odd pair contain one DP FP number: \$f0/\$f1, \$f2/\$f3, ... , \$f30/\$f31
- Even register is the name

MIPS Floating Point Architecture (4/4)

- 1990 Computer actually contains multiple separate chips:
- Processor: handles all the normal stuff
- Coprocessor 1: handles FP and only FP;
- more coprocessors?... Yes, later
- Today, FP coprocessor integrated with CPU, or cheap chips may leave out FP HW
- Instructions to move data between main processor and coprocessors:
-mfc0, mtc0, mfc1, mtc1, etc.
- Appendix contains many more FP ops

Peer Instruction

1. Converting float $->$ int $->$ float produces same float number
2. Converting int $->$ float $->$ int produces same int number
3. FP add is associative:
$(x+y)+z=x+(y+z)$
CS 61C L16 : Floating Point II (24)

ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT
Garcia, Fall 2004 © UCB

As Promised, the way to remember \#s

- What is 2^{34} ? How many bits addresses (l.e., what's ceil $\log _{2}=1 g$ of) 2.5 TB?
- Answer! $2^{X Y}$ means...
$X=0 \Rightarrow 0$
$X=1 \Rightarrow$ Kilo $\sim 10^{3} \quad Y=0 \Rightarrow 1$
$X=2 \Rightarrow$ Mega $\sim 10^{6} \quad Y=2 \Rightarrow 2$
$X=3 \Rightarrow$ Giga $\sim 10^{9} \quad Y=3 \Rightarrow 8$
$X=4 \Rightarrow$ Tera $\sim 10^{12} \quad Y=4 \Rightarrow 16$
$X=5 \Rightarrow$ Peta $\sim 10^{15} \quad Y=5 \Rightarrow 32$
$X=6 \Rightarrow$ Exa $\sim 10^{18} \quad Y=6 \Rightarrow 64$
$X=7 \Rightarrow$ Zetta $\sim 10^{21} Y=7 \Rightarrow 128$
$X=8 \Rightarrow$ Yotta $\sim 10^{24} Y=8 \Rightarrow 256$

CS 61C L16 : Floating Point II (26)

"And in conclusion..."

-Reserve exponents, significands:

Exponent	Significand	Object
0	0	0
0	nonzero	Denorm
$1-254$	anything	+/- fl. pt. \# 255
$\underline{0}$	$\underline{+/-\infty}$	
255	$\underline{\text { nonzero }}$	$\underline{N a N}$

- Integer mult, div uses hi, lo regs
-mfhi and mflo copies out.
- Four rounding modes (to even default) Cal MIPS FL ops complicated, expensive

