
CS 61C L17 Introduction to MIPS: Instruction Representation III (1) Garcia, Fall 2004 © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 17 – Introduction to MIPS
 Instruction Representation III

 2004-10-08

World Cyber Games⇒
 5-day competition

held in SF to determine the top
video game players in the

world. Halo, Warcraft III, FIFA
Soccer, Counter-Strike, etc.
www.worldcybergames.com

CS 61C L17 Introduction to MIPS: Instruction Representation III (2) Garcia, Fall 2004 © UCB

Outline

•Disassembly
•Pseudoinstructions and
“True” Assembly Language (TAL) v.
“MIPS” Assembly Language (MAL)

CS 61C L17 Introduction to MIPS: Instruction Representation III (3) Garcia, Fall 2004 © UCB

Decoding Machine Language

•How do we convert 1s and 0s to C code?
Machine language ⇒ C?

•For each 32 bits:
• Look at opcode: 0 means R-Format, 2 or 3
mean J-Format, otherwise I-Format.
•Use instruction type to determine which
fields exist.
•Write out MIPS assembly code, converting
each field to name, register number/name,
or decimal/hex number.
• Logically convert this MIPS code into valid
C code. Always possible? Unique?

CS 61C L17 Introduction to MIPS: Instruction Representation III (4) Garcia, Fall 2004 © UCB

Decoding Example (1/7)

•Here are six machine language
instructions in hexadecimal:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

•Let the first instruction be at address
4,194,304ten (0x00400000hex).
•Next step: convert hex to binary

CS 61C L17 Introduction to MIPS: Instruction Representation III (5) Garcia, Fall 2004 © UCB

Decoding Example (2/7)

• The six machine language instructions in
binary:

 00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

• Next step: identify opcode and format

1, 4-31 rs rt immediate
0 rs rt rd functshamtR

I
J target address2 or 3

CS 61C L17 Introduction to MIPS: Instruction Representation III (6) Garcia, Fall 2004 © UCB

Decoding Example (3/7)
•Select the opcode (first 6 bits)
to determine the format:

 00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

•Look at opcode:
0 means R-Format,
2 or 3 mean J-Format,
otherwise I-Format.
• Next step: separation of fields

R
R
I
R
I
J

Format:

CS 61C L17 Introduction to MIPS: Instruction Representation III (7) Garcia, Fall 2004 © UCB

Decoding Example (4/7)

•Fields separated based on format/opcode:

0 0 0 2 370
0 0 5 8 420
4 8 0 +3
0 2 4 2 320
8 5 5 -1
2 1,048,577

•Next step: translate (“disassemble”) to
MIPS assembly instructions

R
R
I
R
I
J

Format:

CS 61C L17 Introduction to MIPS: Instruction Representation III (8) Garcia, Fall 2004 © UCB

Decoding Example (5/7)

•MIPS Assembly (Part 1):
Address: Assembly instructions:
0x00400000 or $2,$0,$0
0x00400004 slt $8,$0,$5
0x00400008 beq $8,$0,3
0x0040000c add $2,$2,$4
0x00400010 addi $5,$5,-1
0x00400014 j 0x100001

•Better solution: translate to more
meaningful MIPS instructions (fix the
branch/jump and add labels, registers)

CS 61C L17 Introduction to MIPS: Instruction Representation III (9) Garcia, Fall 2004 © UCB

Decoding Example (6/7)

•MIPS Assembly (Part 2):

or $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

•Next step: translate to C code
(be creative!)

CS 61C L17 Introduction to MIPS: Instruction Representation III (10) Garcia, Fall 2004 © UCB

Decoding Example (7/7)
•After C code (Mapping below)

$v0: product
$a0: multiplicand
$a1: multiplier

product = 0;
while (multiplier > 0) {

product += multiplicand;
multiplier -= 1;

}

Before Hex:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

Demonstrated Big 61C
Idea: Instructions are
just numbers, code is
treated like data

 or $v0,$0,$0
Loop: slt $t0,$0,$a1
 beq $t0,$0,Exit
 add $v0,$v0,$a0
 addi $a1,$a1,-1
 j Loop
Exit:

CS 61C L17 Introduction to MIPS: Instruction Representation III (12) Garcia, Fall 2004 © UCB

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

• Common use prefixes (all SI, except K [= k in SI])

• Confusing! Common usage of “kilobyte” means
1024 bytes, but the “correct” SI value is 1000 bytes
• Hard Disk manufacturers & Telecommunications are

the only computing groups that use SI factors, so
what is advertised as a 30 GB drive will actually only
hold about 28 x 230 bytes, and a 1 Mbit/s connection
transfers 106 bps.

1024 = 1,000,000,000,000,000,000,000,000280 = 1,208,925,819,614,629,174,706,176YYotta
1021 = 1,000,000,000,000,000,000,000270 = 1,180,591,620,717,411,303,424ZZetta
1018 = 1,000,000,000,000,000,000260 = 1,152,921,504,606,846,976EExa
1015 = 1,000,000,000,000,000250 = 1,125,899,906,842,624PPeta
1012 = 1,000,000,000,000240 = 1,099,511,627,776TTera
109 = 1,000,000,000230 = 1,073,741,824GGiga
106 = 1,000,000220 = 1,048,576MMega
103 = 1,000210 = 1,024KKilo
SI sizeFactorAbbrName

physics.nist.gov/cuu/Units/binary.html

CS 61C L17 Introduction to MIPS: Instruction Representation III (13) Garcia, Fall 2004 © UCB

kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi

• New IEC Standard Prefixes [only to exbi officially]

• International Electrotechnical Commission (IEC) in
1999 introduced these to specify binary quantities.
• Names come from shortened versions of the

original SI prefixes (same pronunciation) and bi is
short for “binary”, but pronounced “bee” :-(
• Now SI prefixes only have their base-10 meaning

and never have a base-2 meaning.

280 = 1,208,925,819,614,629,174,706,176
270 = 1,180,591,620,717,411,303,424
260 = 1,152,921,504,606,846,976
250 = 1,125,899,906,842,624
240 = 1,099,511,627,776
230 = 1,073,741,824
220 = 1,048,576
210 = 1,024
Factor

Yiyobi
Zizebi
Eiexbi
Pipebi
Titebi
Gigibi
Mimebi
Kikibi

AbbrName

en.wikipedia.org/wiki/Binary_prefix

As of this
writing, this
proposal has
yet to gain
widespread
use…

CS 61C L17 Introduction to MIPS: Instruction Representation III (14) Garcia, Fall 2004 © UCB

Review from before: lui
•So how does lui help us?
•Example:

addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add $t0,$t0,$at

•Now each I-format instruction has only a 16-
bit immediate.

•Wouldn’t it be nice if the assembler
would this for us automatically?

- If number too big, then just automatically
replace addi with lui, ori, add

CS 61C L17 Introduction to MIPS: Instruction Representation III (15) Garcia, Fall 2004 © UCB

True Assembly Language (1/3)
•Pseudoinstruction: A MIPS instruction
that doesn’t turn directly into a machine
language instruction, but into other MIPS
instrucitons
•What happens with pseudoinstructions?
• They’re broken up by the assembler into
several “real” MIPS instructions.
•But what is a “real” MIPS instruction?
Answer in a few slides

•First some examples

CS 61C L17 Introduction to MIPS: Instruction Representation III (16) Garcia, Fall 2004 © UCB

Example Pseudoinstructions

•Register Move
move reg2,reg1
Expands to:
add reg2,$zero,reg1

•Load Immediate
li reg,value
If value fits in 16 bits:
addi reg,$zero,value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

CS 61C L17 Introduction to MIPS: Instruction Representation III (17) Garcia, Fall 2004 © UCB

True Assembly Language (2/3)
•Problem:
•When breaking up a pseudoinstruction, the
assembler may need to use an extra reg.
• If it uses any regular register, it’ll overwrite
whatever the program has put into it.

•Solution:
•Reserve a register ($1, called $at for
“assembler temporary”) that assembler
will use to break up pseudo-instructions.
•Since the assembler may use this at any
time, it’s not safe to code with it.

CS 61C L17 Introduction to MIPS: Instruction Representation III (18) Garcia, Fall 2004 © UCB

Example Pseudoinstructions

•Rotate Right Instruction
ror reg, value
Expands to:
srl $at, reg, value
sll reg, reg, 32-value
or reg, reg, $at

0

0

• “No OPeration” instruction
nop
Expands to instruction = 0ten,
sll $0, $0, 0

CS 61C L17 Introduction to MIPS: Instruction Representation III (19) Garcia, Fall 2004 © UCB

Example Pseudoinstructions
•Wrong operation for operand

addu reg,reg,value # should be addiu

If value fits in 16 bits, addu is changed to:
addiu reg,reg,value
else:
lui $at,upper 16 bits of value
ori $at,$at,lower 16 bits
addu reg,reg,$at

•How do we avoid confusion about whether
we are talking about MIPS assembler with
or without pseudoinstructions?

CS 61C L17 Introduction to MIPS: Instruction Representation III (20) Garcia, Fall 2004 © UCB

True Assembly Language (3/3)
•MAL (MIPS Assembly Language): the set
of instructions that a programmer may
use to code in MIPS; this includes
pseudoinstructions
•TAL (True Assembly Language): set of
instructions that can actually get
translated into a single machine
language instruction (32-bit binary string)
•A program must be converted from MAL
into TAL before translation into 1s & 0s.

CS 61C L17 Introduction to MIPS: Instruction Representation III (21) Garcia, Fall 2004 © UCB

Questions on Pseudoinstructions

•Question:
•How does MIPS recognize pseudo-
instructions?

•Answer:
• It looks for officially defined pseudo-
instructions, such as ror and move
• It looks for special cases where the
operand is incorrect for the operation
and tries to handle it gracefully

CS 61C L17 Introduction to MIPS: Instruction Representation III (22) Garcia, Fall 2004 © UCB

Rewrite TAL as MAL

•TAL:
or $v0,$0,$0

Loop: slt $t0,$0,$a1
beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

•This time convert to MAL
• It’s OK for this exercise to
make up MAL instructions

CS 61C L17 Introduction to MIPS: Instruction Representation III (23) Garcia, Fall 2004 © UCB

Rewrite TAL as MAL (Answer)
•TAL: or $v0,$0,$0

Loop: slt $t0,$0,$a1
beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

•MAL:
li $v0,0

Loop: bge $zero,$a1,Exit
add $v0,$v0,$a0
sub $a1,$a1,1
j Loop

Exit:

CS 61C L17 Introduction to MIPS: Instruction Representation III (24) Garcia, Fall 2004 © UCB

Peer Instruction

Which of the instructions below
are MAL and which are TAL?
A.addi $t0, $t1, 40000
B.beq $s0, 10, Exit
C.sub $t0, $t1, 1

 ABC
1: MMM
2: MMT
3: MTM
4: MTT
5: TMM
6: TMT
7: TTM
8: TTT

CS 61C L17 Introduction to MIPS: Instruction Representation III (26) Garcia, Fall 2004 © UCB

In conclusion

•Disassembly is simple and starts by
decoding opcode field.
•Be creative, efficient when authoring C

•Assembler expands real instruction set
(TAL) with pseudoinstructions (MAL)
•Only TAL can be converted to raw binary
•Assembler’s job to do conversion
•Assembler uses reserved register $at
•MAL makes it much easier to write MIPS

