
CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (1) Garcia, Fall 2004 © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 18 – Running a Program I
aka Compiling, Assembling, Linking, Loading (CALL)

 2004-10-11

Finally, Tivo for the radio! ⇒
 Griffin Technologies released

their new “radioSHARK” for $70 that allows
you to pause live radio and “timeshift”
your radio shows. Easily download

 them easily to your iPod…cool!
griffintechnology.com/products/radioshark/

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (2) Garcia, Fall 2004 © UCB

Overview

• Interpretation vs Translation
•Translating C Programs
•Compiler
•Assembler
•Linker (next time)
•Loader (next time)

•An Example (next time)

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (3) Garcia, Fall 2004 © UCB

Language Continuum

• In general, we interpret a high level
language if efficiency is not critical or
translated to a lower level language to
improve performance

Easy to program
Inefficient to interpret

Efficient
Difficult to program

Scheme
Java
C++ C Assembly machine language

Java bytecode

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (4) Garcia, Fall 2004 © UCB

Interpretation vs Translation

•How do we run a program written in a
source language?
• Interpreter: Directly executes a
program in the source language
•Translator: Converts a program from
the source language to an equivalent
program in another language
•For example, consider a Scheme
program foo.scm

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (5) Garcia, Fall 2004 © UCB

Interpretation

Scheme program: foo.scm

Scheme Interpreter

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (6) Garcia, Fall 2004 © UCB

Translation

Scheme program: foo.scm

Hardware

Scheme Compiler

Executable(mach lang pgm): a.out

°Scheme Compiler is a translator from
Scheme to machine language.

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (7) Garcia, Fall 2004 © UCB

Interpretation

•Any good reason to interpret machine
language in software?
•SPIM – useful for learning / debugging
•Apple Macintosh conversion
•Switched from Motorola 680x0
instruction architecture to PowerPC.
•Could require all programs to be re-
translated from high level language
• Instead, let executables contain old
and/or new machine code, interpret old
code in software if necessary

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (8) Garcia, Fall 2004 © UCB

Interpretation vs. Translation?
•Easier to write interpreter
• Interpreter closer to high-level, so gives
better error messages (e.g., SPIM)
•Translator reaction: add extra information
to help debugging (line numbers, names)

• Interpreter slower (10x?) but code is
smaller (1.5X to 2X?)
• Interpreter provides instruction set
independence: run on any machine
•Apple switched to PowerPC. Instead of
retranslating all SW, let executables
contain old and/or new machine code,
interpret old code in software if necessary

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (9) Garcia, Fall 2004 © UCB

Steps to Starting a Program
C program: foo.c

Compiler
Assembly program: foo.s

Assembler

Linker
Executable(mach lang pgm): a.out

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (10) Garcia, Fall 2004 © UCB

Compiler

• Input: High-Level Language Code
(e.g., C, Java such as foo.c)
•Output: Assembly Language Code
(e.g., foo.s for MIPS)
•Note: Output may contain
pseudoinstructions
•Pseudoinstructions: instructions that
assembler understands but not in
machine (last lecture) For example:
• mov $s1,$s2 ⇒ or $s1,$s2,$zero

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (11) Garcia, Fall 2004 © UCB

Upcoming Calendar

Caches

Running
Program II

Wed

Caches
Midterm
grades

out

CachesCaches
Midterm
@ 7pm

1 Pimintel

#8
Midterm

week

CachesRunning
Program

Running
Program I

#7
This week

FriThurs LabMonWeek #

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (12) Garcia, Fall 2004 © UCB

Administrivia…Midterm in 1 week!
• 2004-10-18 @ 7-10pm in 1 Piminitel
• Covers labs,hw,proj,lec up to Caches
• Last sem midterm + answers on www
• Bring…

• NO backpacks, cells, calculators, pagers, PDAs
• 2 Pens (we’ll provide write-in exam booklets)
• One handwritten (both sides) 8.5”x11” paper
• One green sheet (corrections below to bugs

from “Core Instruction Set”)
1) Opcode wrong for Load Word.

It should say 23hex, not 0 / 23hex.
2) sll and srl should shift values in R[rt], not R[rs]

i.e. sll/srl: R[rd] = R[rt] << shamt

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (13) Garcia, Fall 2004 © UCB

Administrivia…Other stuff

•Bug in Friday’s slides (slide 19)
• WAS: ori $at,$zero,lower 16 bits
• SHOULD BE: ori $at,$at,lower 16 bits

•Grades in for Homework XX, Proj YY
•You have one week to request official
‘regrade’ from reader – specify reason.
•Reader will then regrade entire HW/Proj
(grade may go down). In exceptional
cases, can appeal to TA to intervene.
• If no appeal generated within a week,
grade frozen, no way to change after
that. (Regrade could still be pending, tho)

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (14) Garcia, Fall 2004 © UCB

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (15) Garcia, Fall 2004 © UCB

Assembler

• Input: Assembly Language Code
(e.g., foo.s for MIPS)
•Output: Object Code, information tables
(e.g., foo.o for MIPS)
•Reads and Uses Directives
•Replace Pseudoinstructions
•Produce Machine Language
•Creates Object File

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (16) Garcia, Fall 2004 © UCB

Assembler Directives (p. A-51 to A-53)

•Give directions to assembler, but do not
produce machine instructions
 .text: Subsequent items put in user text
segment
 .data: Subsequent items put in user data
segment
 .globl sym: declares sym global and can
be referenced from other files
 .asciiz str: Store the string str in
memory and null-terminate it
.word w1…wn: Store the n 32-bit quantities
in successive memory words

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (17) Garcia, Fall 2004 © UCB

Pseudoinstruction Replacement
• Asm. treats convenient variations of machine

language instructions as if real instructions
Pseudo: Real:
 subu $sp,$sp,32 addiu $sp,$sp,-32

 sd $a0, 32($sp) sw $a0, 32($sp)
sw $a1, 36($sp)

 mul $t7,$t6,$t5 mul $t6,$t5
mflo $t7

 addu $t0,$t6,1 addiu $t0,$t6,1

 ble $t0,100,loop slti $at,$t0,101
bne $at,$0,loop

 la $a0, str lui $at,left(str)
 ori $a0,$at,right(str)

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (18) Garcia, Fall 2004 © UCB

Producing Machine Language (1/2)

•Simple Case
•Arithmetic, Logical, Shifts, and so on.
•All necessary info is within the
instruction already.

•What about Branches?
•PC-Relative
•So once pseudoinstructions are replaced
by real ones, we know by how many
instructions to branch.

•So these can be handled easily.

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (19) Garcia, Fall 2004 © UCB

Producing Machine Language (2/2)

•What about jumps (j and jal)?
• Jumps require absolute address.

•What about references to data?
•la gets broken up into lui and ori
•These will require the full 32-bit address
of the data.

•These can’t be determined yet, so we
create two tables…

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (20) Garcia, Fall 2004 © UCB

Symbol Table
•List of “items” in this file that may be
used by other files.
•What are they?
•Labels: function calling
•Data: anything in the .data section;
variables which may be accessed across
files

•First Pass: record label-address pairs
•Second Pass: produce machine code
•Result: can jump to a later label without
first declaring it

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (21) Garcia, Fall 2004 © UCB

Relocation Table

•List of “items” for which this file
needs the address.
•What are they?
•Any label jumped to: j or jal
- internal
- external (including lib files)

•Any piece of data
- such as the la instruction

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (22) Garcia, Fall 2004 © UCB

Object File Format
•object file header: size and position of
the other pieces of the object file
• text segment: the machine code
•data segment: binary representation of
the data in the source file
• relocation information: identifies lines
of code that need to be “handled”
•symbol table: list of this file’s labels
and data that can be referenced
•debugging information

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (23) Garcia, Fall 2004 © UCB

Peer Instruction

1. Assembler knows where a module’s data &
instructions are in relation to other modules.

2. Assembler will ignore the instruction
Loop:nop because it does nothing.

3. Java designers used an interpreter (rather
than a translater) mainly because of (at least
one of): ease of writing, better error msgs,
smaller object code.

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (25) Garcia, Fall 2004 © UCB

And in conclusion…
C program: foo.c

Compiler
Assembly program: foo.s

Assembler

Linker
Executable(mach lang pgm): a.out

Loader
Memory

Object(mach lang module): foo.o

lib.o

