CS61C : Machine Structures

Lecture 19 — Running a Program I
aka Compiling, Assembling, Linking, Loading (CALL)

2004-10-13
Lecturer PSOE Dan Garcia

www.cs .berkeley.edu/~ddgarcia

Holiday present? &

Segway’s new idea

in transportation is called the
Centaur, which allows for lean-
forward acceleration, wheelie
turns, and an enviable ride. Be : ‘
the first on your block! www.segway.com/centaur

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (1) Garcia, Fall 2004 © UCB




Where Are We Now?
[C program: f'o:)ﬁ
[ Compiler |
STAssembly program: f'oo.ﬁ
| Assembler |«

;|Object(mach lang module): foo.o
,' Linker —Tib.o
%(ecutaﬂe(macmang pgm): a.o%

Loader |«
Qf Memory
CS 61C L19 Running a Program aka Compiling, ) ) ng (CALL) Il (2) Garcia, Fall 2004 © UCB




Link Editor/Linker (1/3)

 Input: Object Code, information tables
(e.g., foo.o for MII5$)

e Qutput: Executable Code
(e.g., a.out for MIPS)

* Combines several object (.0) files into
a single executable (“linking™)

* Enable Separate Compilation of files

- Changes to one file do not require
recompilation of whole program

- Windows NT source is >40 M lines of code!

* Link Editor name from editing the “links”
Q in jump and link instructions

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (3) Garcia, Fall 2004 © UCB



Link Editor/Linker (2/3)

a.out
ocated text 1

ocated text 2
ocated data 1
ocated data 2

ﬂ CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (4) Garcia, Fall 2004 © UCB



Link Editor/Linker (3/3)

 Step 1: Take text segment from each
.0 file and put them together.

 Step 2: Take data segment from each
.0 file, put them together, and
concatenate this onto end of text
segments.

» Step 3: Resolve References

- Go through Relocation Table and handle
each entry

- That is, fill in all absolute addresses

Q CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (5) Garcia, Fall 2004 © UCB



Four Types of Addresses

* PC-Relative Addressing (beq, bne):
never relocate

 Absolute Address (j, jal): always
relocate

e External Reference (usually jal):
always relocate

e Data Reference (often 1ui and ori):
always relocate

Q CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (6) Garcia, Fall 2004 © UCB



Absolute Addresses in MIPS

* Which instructions need relocation
editing?

e J-format: jump, jump and link

‘ j/jal XXXXX ‘

* Loads and stores to variables in static
area, relative to global pointer

‘ lw/sw | S$Sgp Sx address ‘

e What about conditional branches?

beqg/bne| $rs Srt address ‘

* PC-relative addressing preserved even
if code moves

Q CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (7) Garcia, Fall 2004 © UCB




Resolving References (1/2)

e Linker assumes first word of first text
segment is at address 0x00000000.

 Linker knows:
- length of each text and data segment
- ordering of text and data segments

e Linker calculates:

 absolute address of each label to be
jumped to (internal or external) and each
piece of data being referenced

Q CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (8) Garcia, Fall 2004 © UCB



Resolving References (2/2)

e To resolve references:

- search for reference (data or label) in all
symbol tables

- iIf not found, search library files
(for example, for printf£)

- once absolute address is determined, fill
in the machine code appropriately

* Qutput of linker: executable file
containing text and data (plus header)

Q CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (9) Garcia, Fall 2004 © UCB



Static vs Dynamically linked libraries

* What we’ve described is the traditional
way to create a static-linked approach

* The library is now part of the executable,
so if the library updates we don’t get the
fix (have to recompile if we have source)

* In includes the entire library even if not all
of it will be used.

* An alternative is dynamically linked
libraries (DLL), common on Windows &
UNIX platforms

* 1t run overhead for dynamic linker-loader
Q - Having executable isn’t enough anymore!

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (10) Garcia, Fall 2004 © UCB



Where Are We Now?
[C program: fo:)ﬁ
[ Compiler |
STAssembly program: foo.ﬁ
[Assembler |«

;|Object(mach lang module): foo.o
[ Linker —Tib.o
%(ecutaﬁe(mach lang pgm): a.o%

Loader |«

Q CS 61C L19 Running a Program aka Compiling, ) , ng (CALL) Il (11) Garcia, Fall 2004 © UCB




Loader (1/3)

 Input: Executable Code
(e.g., a.out for MIPS)

e Qutput: (program is run)
 Executable files are stored on disk.

* When one is run, loader’s job is to
load it iInto memory and start it
running.

* In reality, loader is the operating
system (OS)

- loading is one of the OS tasks

Q CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (12) Garcia, Fall 2004 © UCB



Loader (2/3)
« SO0 what does a loader do?

e Reads executable file’s header to
determine size of text and data
segments

* Creates new address space for
program large enough to hold text and
data segments, along with a stack
segment

e Copies instructions and data from
executable file into the new address
space (this may be anywhere in
memory)

Q CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (13) Garcia, Fall 2004 © UCB



Loader (3/3)

* Copies arguments passed to the
program onto the stack

e Initializes machine registers

- Most registers cleared, but stack pointer
assigned address of 1st free stack
location

« Jumps to start-up routine that copies
program’s arguments from stack to
registers and sets the PC

- If main routine returns, start-up routine
terminates program with the exit system

Q CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (14) Garcia, Fall 2004 © UCB



Administrivia

* If you have points taken off for “not
enough comments” by your reader for
HW2 or HW3, then email your reader
before next Monday (freeze day).

* Friday will be Intro to Synchronous
Digital Systems (not Caches)

« Anonymous Survey in lab this week

Q CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (15) Garcia, Fall 2004 © UCB



Example: C = Asm = Obj= Exe = Run
#include <stdio.h>

int main (int argc, char *argv[]) {
int i, sum = 0;

for (1 = 0; i <= 100; i++)
sum = sum + 1 * 1;

printf ("The sum from 0 .. 100 is %d\n",
sum) ;

Q CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (16) Garcia, Fall 2004 © UCB



Example: C = Asm = Obj= Exe = Run

.text

.align 2
.globl main
main:

subu S$sp, $sp, 32
sw $ra, 20 (Ssp)
sd $al0, 32(S$sp)
sw $0, 24 (Ssp)
sw $0, 28 (S$sp)
loop:

lw St6, 28 (S$sp)

mul St7, $t6,St6

lw St8, 24 ($sp)

addu $t9,5$t8,5t7

w $t9, 24 ($sp)

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (17)

addu $t0, S$t6, 1
sw $t0, 28 (S$Ssp)
ble $t0,100, loop
la $al0, str

lw Sal, 24 ($sp)
jal printf

move S$vO0, SO

lw $ra, 20 (Ssp)
addiu $sp, Ssp, 32
jr $ra Where are

. da'_ca 7 pseudo-
.align O jnstructions?

str:

.asciiz "The sum
from O 100 is
sd\n"

Garcia, Fall 2004 © UCB



Example: C = Asm = Obj= Exe = Run

.text

.align 2

.globl main
main:

subu $sp, $sp, 32

sw $ra, 20 (Ssp)
sd $al0, 32 ($sp)

sw $0, 24 (Ssp)
sw $0, 28 (S$sp)
loop:

lw St6, 28 (S$sp)

mul St7, $t6,St6

lw St8, 24 ($sp)

addu $t9,5$t8,5t7

w $t9, 24 ($sp)

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (18)

addu $t0, St6, 1
sw $t0, 28 (S$Ssp)
ble $t0,100, loop
la $a0, str

lw Sal, 24 ($sp)
jal printf

move SvO0, SO

lw $ra, 20 (Ssp)
addiu $sp, Ssp, 32

jr Sra 7 pseudo-
: dai_:a instructions
.align O underlined

str:

.asciiz "The sum
from O 100 is
sd\n"

Garcia, Fall 2004 © UCB



Symbol Table Entries

 Symbol Table
Label Address
main:
loop: ?
str:
printf:

e Relocation Table

Address Instr. Type Dependency

Garcia, Fall 2004 © UCB



Example: C = Asm = Obj= Exe = Run

‘Remove pseudoinstructions, assign addresses

00 addiu $29,$29,-32 |30 addiu $8,$14, 1
04 sw $31,20($29) | 34 sw $8,28($29)
08 sw S4, 32($29) |38 slti §1,$8, 101
Oc sw S5, 36($29) | 3c bne S1,$0, loop
10 sw SO0, 24($29) 140 1lui $4, 1.str
14 sw SO0, 28($29) 44 ori S4,54,r.str
18 1w $14, 28($29) 48 1w $5,24($29)
lc multu $14, $14 4c jal printf

20 mflo $15 50 add $2, S0, $O
24 1w $24, 24 ($29) 54 1w $31,20($29)
28 addu $25,$24,$15 |58 addiu $29,$29,32
2C sSw $25, 24 ($29) 5c jr $31

Q CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (20)

Garcia, Fall 2004 © UCB



Symbol Table Entries

 Symbol Table
- Label Address
main: 0x00000000
loop: 0x00000018
str: 0x10000430
printf: 0x000003b0

 Relocation Information

* Address Instr. Type Dependency
0x00000040 lui l.str
0x00000044 ori r.str
0x0000004c jal printf

Q CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (21) Garcia, Fall 2004 © UCB



Example: C = Asm = Obj= Exe = Run

‘Edit Addresses: start at 0x0040000

00 addiu $29,$29,-32 30 addiu $8,$14, 1
04 sw $31,20($29) 34 sw $8,28($29)
08 sw S4, 32($29) 38 slti $1,$8, 101
Oc sw S5, 36($29) | 3c bne $1,$0, -10
10 sw SO, 24(S$29) 40 lui $4, 4096

14 sw SO, 28(S29) 44 ori $4,$4,1072

18 1w $14, 28($29) 48 1w $5,24($29)
lc multu $14, $14 4c jal 812
20 mflo $15 50 add $2, S0, SO

24 1w $24, 24 ($29) 54 1w $31,20($29)
28 addu $25,$24,$15 |58 addiu $29,$29,32
2C sSw $25, 24 ($29) 5c jr S$31

Q CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (22) Garcia, Fall 2004 © UCB



Exe = Run

Example: C = Asm = Obj =

O OO0O0O0O0OOHHHOOHHOOOOOOOOH
OCOO0O0O0O0O0O0O0O0O0OHOHOOOOOOOO0O
Or10r-HOH-H+-HOOOH+HOOHOOOHOHOOO
OOO0OOHH-rH-r-rOO-HOOOHOH-HOOOHO
Or100™-H-rrir10O0-H{O-Hr{O-HO—-H—{OOO
—HOHr-HOOOOOOH-HOOHr-OOO - OO
—OOOOO0OO0OO0OO0OOrH-HOOOHOOOHOOOO0O
—OOOO0OO0O0O0O0O0O0O0O0OO0OHOOOHOOOOO
—HOOOOOOO0OO0OO0O0O0O0OOHOOOOOOOO0O
—HOOOOOO0OO0OO0O0O0O0O0OOrHOOOOOOO0O0O
—HOOOOOOO0OO0OO0O0O0O0OHOOOOHOOOO
—HOOOOOOOOO0OOHEHH-HOOOO0OO00O0000
—HOOOOOOO0OO0OO0O0OHOHOHOOOOOO
—OOOOOO0OO0O0O0O0OHOrH-OOO0OO0O0O0000
—HOOOOOO0O0O0O0O0OHHHOOOOOOO0O0O
—HOOOOOOO0OO0OO0O0O0OHHOOOOOOOO0O
O r-HOOOOOOHOOHOHOHOOHHOO
Or-10000rHOHOOOOHOOOOOOHOOO
OO HOHOOOOHOOHHO OO
- OOOOHrH-riIr{Or{O OO0 0O -H-HOO
I OOOOOrHOOOOOOOHOOHO--HOO
AT A A A O OO HOOHHOHOOHH-HO
OCOO0O0O0O0O0OOHHOOOOOOOOOOOOHO
e Al A A A A A A AT O HO OO HO HO H A —H+HO
el A A A A A A A A AT O H O HO HO O HHO
A A A A O OO HO HO HOHOOHHHO
e A A AT O H O OO H A A A O O
Or-irirdrdrArdr1 OO0 —-{r{OO0O™-HrH-{r{O—OO0O0O0O
OCOO0O0O0O0O0O0O0O0O0O0O0OHOHOOOOOOO
A A -HO OO HH+HOOOH-HOOHO-HOO
OCOO0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O000
Orirdrdrdrdrdr10O 00 -HOOOHOHOOHOOO

O VO VO VO VO VO U
COOOHHHHHNNNNMMNMNM I I I NN
ololololololololololololololololololololololole)
SIS LSS SIS LSS L LS
ololeleoleololololololololololololololololololol )
ololololololololololololololololololololololole)
LR EEEEEEEE R
0000000000000 O0000O0O0O000O0

Garcia, Fall 2004 © UCB

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (23)

Gt



Peer Instruction

Which of the following instr. may ABC
need to be edited during link phase? |1. rrr
2: FFT

. - 3: EFTF
Loop: lui Sat, OxABCD }# A |1. sop
ori $a0,S$at, OxFEDC 5: TFF

jal add link # B |2 107

( bne $a0,$v0, Loop # C [8: TTT

A S 610 L1Y Kunning a Program aka Compiling, Assembling, Loading, LInKIng (CALL) Il (24) Garcia, Fall 2004 © UCB



Peer Instruction Answer

Which of the following instr. may ABC
need to be edited during link phase? |1. rrr
_ data reference; relocate g ggg

Loop: lu_:l. Sat, OxABCD }# A |1. sop
ori $a0,Sat, OxFEDC 5: TFF

] . Subroutine; relocate 6: TFT

jal add link # B (5. orr

— PC-relative branch; QK :
Q bne $a0,$v0, Loop Cc |[8: TTT

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (25) Garcia, Fall 2004 © UCB



Things to Remember (1/3)
[C program: foo.c ]
Compiler

[Assembly program: foo.s |
Assembler

[Object(mach lang module): foo.0 |

Linker > g —“IbO\

[Executable(mach lang pgm): a.out]

Loader

Q CS 61C L19 Running a Program aka Compian (CALL) Il (26) Garcia, Fall 2004 © UCB




Things to Remember (2/3)

e Compiler converts a single HLL file
into a single assembly language file.

« Assembler removes
pseudoinstructions, converts what it
can to machine language, and creates
a checklist for the linker (relocation
taI?!Ie). This changes each .s file into a
.0 file.

e Linker combines several .o files and
resolves absolute addresses.

* Loader loads executable into memory
Cd and begins execution.

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (27) Garcia, Fall 2004 © UCB



Things to Remember 3/3

e Stored Program concept mean
instructions just like data, so can take data
from storage, and keep transforming it
until load registers and jump to routine to
begin execution

- Compiler = Assembler = Linker (= Loader )

* Assembler does 2 passes to resolve
addresses, handling internal forward
references

* Linker enables separate compilation,
libraries that need not be compiled, and
resolves remaining addresses

Q CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) Il (28) Garcia, Fall 2004 © UCB



