
CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (1) Garcia, Fall 2004 © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 19 – Running a Program II
aka Compiling, Assembling, Linking, Loading (CALL)

 2004-10-13

Holiday present?⇒
 Segway’s new idea

in transportation is called the
Centaur, which allows for lean-

forward acceleration, wheelie
turns, and an enviable ride. Be
the first on your block! www.segway.com/centaur

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (2) Garcia, Fall 2004 © UCB

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (3) Garcia, Fall 2004 © UCB

Link Editor/Linker (1/3)
• Input: Object Code, information tables
(e.g., foo.o for MIPS)
•Output: Executable Code
(e.g., a.out for MIPS)
•Combines several object (.o) files into
a single executable (“linking”)
•Enable Separate Compilation of files

• Changes to one file do not require
recompilation of whole program

- Windows NT source is >40 M lines of code!
• Link Editor name from editing the “links”
in jump and link instructions

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (4) Garcia, Fall 2004 © UCB

Link Editor/Linker (2/3)
.o file 1
text 1
data 1
info 1

.o file 2
text 2
data 2
info 2

Linker

a.out
Relocated text 1
Relocated text 2
Relocated data 1
Relocated data 2

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (5) Garcia, Fall 2004 © UCB

Link Editor/Linker (3/3)

•Step 1: Take text segment from each
.o file and put them together.
•Step 2: Take data segment from each
.o file, put them together, and
concatenate this onto end of text
segments.
•Step 3: Resolve References

• Go through Relocation Table and handle
each entry

• That is, fill in all absolute addresses

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (6) Garcia, Fall 2004 © UCB

Four Types of Addresses

•PC-Relative Addressing (beq, bne):
never relocate
•Absolute Address (j, jal): always
relocate
•External Reference (usually jal):
always relocate
•Data Reference (often lui and ori):
always relocate

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (7) Garcia, Fall 2004 © UCB

Absolute Addresses in MIPS
•Which instructions need relocation
editing?
•J-format: jump, jump and link
j/jal xxxxx

•Loads and stores to variables in static
area, relative to global pointer
lw/sw $gp $x address

•What about conditional branches?
beq/bne $rs $rt address
•PC-relative addressing preserved even
if code moves

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (8) Garcia, Fall 2004 © UCB

Resolving References (1/2)

•Linker assumes first word of first text
segment is at address 0x00000000.
•Linker knows:

• length of each text and data segment
• ordering of text and data segments

•Linker calculates:
• absolute address of each label to be
jumped to (internal or external) and each
piece of data being referenced

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (9) Garcia, Fall 2004 © UCB

Resolving References (2/2)

•To resolve references:
• search for reference (data or label) in all
symbol tables

• if not found, search library files
(for example, for printf)

• once absolute address is determined, fill
in the machine code appropriately

•Output of linker: executable file
containing text and data (plus header)

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (10) Garcia, Fall 2004 © UCB

Static vs Dynamically linked libraries

•What we’ve described is the traditional
way to create a static-linked approach

• The library is now part of the executable,
so if the library updates we don’t get the
fix (have to recompile if we have source)

• In includes the entire library even if not all
of it will be used.

•An alternative is dynamically linked
libraries (DLL), common on Windows &
UNIX platforms

• 1st run overhead for dynamic linker-loader
• Having executable isn’t enough anymore!

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (11) Garcia, Fall 2004 © UCB

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (12) Garcia, Fall 2004 © UCB

Loader (1/3)

• Input: Executable Code
(e.g., a.out for MIPS)
•Output: (program is run)
•Executable files are stored on disk.
•When one is run, loader’s job is to
load it into memory and start it
running.
• In reality, loader is the operating
system (OS)

• loading is one of the OS tasks

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (13) Garcia, Fall 2004 © UCB

Loader (2/3)
•So what does a loader do?
•Reads executable file’s header to
determine size of text and data
segments
•Creates new address space for
program large enough to hold text and
data segments, along with a stack
segment
•Copies instructions and data from
executable file into the new address
space (this may be anywhere in
memory)

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (14) Garcia, Fall 2004 © UCB

Loader (3/3)

•Copies arguments passed to the
program onto the stack
• Initializes machine registers

• Most registers cleared, but stack pointer
assigned address of 1st free stack
location

•Jumps to start-up routine that copies
program’s arguments from stack to
registers and sets the PC

• If main routine returns, start-up routine
terminates program with the exit system
call

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (15) Garcia, Fall 2004 © UCB

Administrivia

• If you have points taken off for “not
enough comments” by your reader for
HW2 or HW3, then email your reader
before next Monday (freeze day).
•Friday will be Intro to Synchronous
Digital Systems (not Caches)
•Anonymous Survey in lab this week

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (16) Garcia, Fall 2004 © UCB

Example: C ⇒ Asm ⇒ Obj ⇒ Exe ⇒ Run
#include <stdio.h>

int main (int argc, char *argv[]) {

 int i, sum = 0;

 for (i = 0; i <= 100; i++)
 sum = sum + i * i;

 printf ("The sum from 0 .. 100 is %d\n",
sum);

}

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (17) Garcia, Fall 2004 © UCB

Example: C ⇒ Asm ⇒ Obj ⇒ Exe ⇒ Run
.text
.align 2
.globl main
main:
subu $sp,$sp,32
sw $ra, 20($sp)
sd $a0, 32($sp)
sw $0, 24($sp)
sw $0, 28($sp)
loop:
lw $t6, 28($sp)
mul $t7, $t6,$t6
lw $t8, 24($sp)
addu $t9,$t8,$t7
sw $t9, 24($sp)

 addu $t0, $t6, 1
sw $t0, 28($sp)
ble $t0,100, loop
la $a0, str
lw $a1, 24($sp)
jal printf
move $v0, $0
lw $ra, 20($sp)
addiu $sp,$sp,32
jr $ra
.data
.align 0
str:
.asciiz "The sum
from 0 .. 100 is
%d\n"

Where are
7 pseudo-
instructions?

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (18) Garcia, Fall 2004 © UCB

Example: C ⇒ Asm ⇒ Obj ⇒ Exe ⇒ Run
.text
.align 2
.globl main
main:
subu $sp,$sp,32
sw $ra, 20($sp)
sd $a0, 32($sp)
sw $0, 24($sp)
sw $0, 28($sp)
loop:
lw $t6, 28($sp)
mul $t7, $t6,$t6
lw $t8, 24($sp)
addu $t9,$t8,$t7
sw $t9, 24($sp)

 addu $t0, $t6, 1
sw $t0, 28($sp)
ble $t0,100, loop
la $a0, str
lw $a1, 24($sp)
jal printf
move $v0, $0
lw $ra, 20($sp)
addiu $sp,$sp,32
jr $ra
.data
.align 0
str:
.asciiz "The sum
from 0 .. 100 is
%d\n"

7 pseudo-
instructions
underlined

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (19) Garcia, Fall 2004 © UCB

Symbol Table Entries

•Symbol Table
Label Address
 main:

 loop:

 str:

 printf:

•Relocation Table
 Address Instr. Type Dependency

?

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (20) Garcia, Fall 2004 © UCB

Example: C ⇒ Asm ⇒ Obj ⇒ Exe ⇒ Run

00 addiu $29,$29,-32
04 sw $31,20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25,$24,$15
2c sw $25, 24($29)

30 addiu $8,$14, 1
34 sw $8,28($29)
38 slti $1,$8, 101
3c bne $1,$0, loop
40 lui $4, l.str
44 ori $4,$4,r.str
48 lw $5,24($29)
4c jal printf
50 add $2, $0, $0
54 lw $31,20($29)
58 addiu $29,$29,32
5c jr $31

•Remove pseudoinstructions, assign addresses

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (21) Garcia, Fall 2004 © UCB

Symbol Table Entries

•Symbol Table
• Label Address
main: 0x00000000
loop: 0x00000018
str: 0x10000430
printf: 0x000003b0

•Relocation Information
• Address Instr. Type Dependency
0x00000040 lui l.str
0x00000044 ori r.str
0x0000004c jal printf

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (22) Garcia, Fall 2004 © UCB

Example: C ⇒ Asm ⇒ Obj ⇒ Exe ⇒ Run

00 addiu $29,$29,-32
04 sw $31,20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25,$24,$15
2c sw $25, 24($29)

30 addiu $8,$14, 1
34 sw $8,28($29)
38 slti $1,$8, 101
3c bne $1,$0, -10
40 lui $4, 4096
44 ori $4,$4,1072
48 lw $5,24($29)
4c jal 812
50 add $2, $0, $0
54 lw $31,20($29)
58 addiu $29,$29,32
5c jr $31

•Edit Addresses: start at 0x0040000

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (23) Garcia, Fall 2004 © UCB

Example: C ⇒ Asm ⇒ Obj ⇒ Exe ⇒ RunRun
0x004000 00100111101111011111111111100000
0x004004 10101111101111110000000000010100
0x004008 10101111101001000000000000100000
0x00400c 10101111101001010000000000100100
0x004010 10101111101000000000000000011000
0x004014 10101111101000000000000000011100
0x004018 10001111101011100000000000011100
0x00401c 10001111101110000000000000011000
0x004020 00000001110011100000000000011001
0x004024 00100101110010000000000000000001
0x004028 00101001000000010000000001100101
0x00402c 10101111101010000000000000011100
0x004030 00000000000000000111100000010010
0x004034 00000011000011111100100000100001
0x004038 00010100001000001111111111110111
0x00403c 10101111101110010000000000011000
0x004040 00111100000001000001000000000000
0x004044 10001111101001010000000000011000
0x004048 00001100000100000000000011101100
0x00404c 00100100100001000000010000110000
0x004050 10001111101111110000000000010100
0x004054 00100111101111010000000000100000
0x004058 00000011111000000000000000001000
0x00405c 00000000000000000001000000100001

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (24) Garcia, Fall 2004 © UCB

Peer Instruction

Which of the following instr. may
need to be edited during link phase?

Loop: lui $at, 0xABCD
 ori $a0,$at, 0xFEDC
 jal add_link # B
 bne $a0,$v0, Loop # C

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

A}

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (25) Garcia, Fall 2004 © UCB

Peer Instruction Answer

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

data reference; relocate

 subroutine; relocate

 PC-relative branch; OK

Which of the following instr. may
need to be edited during link phase?

Loop: lui $at, 0xABCD
 ori $a0,$at, 0xFEDC
 jal add_link # B
 bne $a0,$v0, Loop # C

A}

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (26) Garcia, Fall 2004 © UCB

Things to Remember (1/3)
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (27) Garcia, Fall 2004 © UCB

Things to Remember (2/3)

•Compiler converts a single HLL file
into a single assembly language file.
•Assembler removes
pseudoinstructions, converts what it
can to machine language, and creates
a checklist for the linker (relocation
table). This changes each .s file into a
.o file.
•Linker combines several .o files and
resolves absolute addresses.
•Loader loads executable into memory
and begins execution.

CS 61C L19 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) II (28) Garcia, Fall 2004 © UCB

Things to Remember 3/3
•Stored Program concept mean
instructions just like data, so can take data
from storage, and keep transforming it
until load registers and jump to routine to
begin execution
• Compiler ⇒ Assembler ⇒ Linker (⇒ Loader)

•Assembler does 2 passes to resolve
addresses, handling internal forward
references
•Linker enables separate compilation,
libraries that need not be compiled, and
resolves remaining addresses

