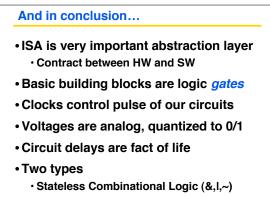

• A *combinational* logic block is one in which the output is a function only of its current input.

Garcia, Fall 2004 © UCB


• Combinational logic cannot have memory (e.g., a register is not a combinational unit).

CS 61C L20 Inf

	Peer Instruction		
Α.	SW can peek at HW (past ISA		ABC
Α.	SW can peek at HW (past ISA abstraction boundary) for optimizations	1:	ABC FFF
	abstraction boundary) for optimizations	2:	FFF FFT
	abstraction boundary) for optimizations SW can depend on particular HW	2: 3:	FFF FFT FTF
	abstraction boundary) for optimizations	2: 3: 4:	FFF FFT FTF FTT
В.	abstraction boundary) for optimizations SW can depend on particular HW implementation of ISA	2: 3: 4: 5:	FFF FFT FTF FTT TFF
В.	abstraction boundary) for optimizations SW can depend on particular HW implementation of ISA Timing diagrams serve as a critical	2: 3: 4:	FFF FFT FTF FTT TFF TFT
В.	abstraction boundary) for optimizations SW can depend on particular HW implementation of ISA	2: 3: 4: 5:	FFF FFT FTF FTT TFF

Garcia, Fall 2004 © UCB

• State circuits (e.g., registers)