

Representations of CL Circuits...

- Truth Tables
- Logic Gates
- Boolean Algebra

Cal Garcia, Sping 2004 © UCB

Review...

- We use feedback to maintain state
- Register files used to build memories
- D-FlipFlops used for Register files
- Clocks usually tied to D-FlipFlop load
- Setup and Hold times important
- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
- You'll see them again in 150, 152 \& 164

Cal
 Garcia, Sping 2004 QuCB

TT Example \#3: 3-input majority circuit				
		a	b c	y
		0	0 0	0
		0	$0 \quad 1$	0
		0	10	0
		0	11	1
			0	0
			01	1
			10	1
Ca		1	11	1

2-input gates extend to n-inputs		
- N -input XOR is the only one which isn't so obvious	a b c	y
	0000	0
- It's simple: XOR is a 1 iff the \# of 1 s at its input is odd \Rightarrow	$0 \begin{array}{lll}0 & 0 & 1\end{array}$	1
	$0 \quad 10$	1
	$\begin{array}{lll}0 & 1 & 1\end{array}$	0
	100	1
	$1 \begin{array}{lll}1 & 0 & 1\end{array}$	0
	110	0
Cal	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	1

Boolean Algebra (e.g., for majority fun.)
Cal
$\mathbf{y}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}+\mathbf{b} \cdot \mathbf{c}$
$\mathbf{y}=\mathbf{a b + a c}+\mathbf{b c}$

Laws of Boolean Algebra		
$x \cdot \bar{x}=0$	$x+\bar{x}=1$	complementarity
$x \cdot 0=0$	$x+1=1$	laws of 0's and 1's
$x \cdot 1=x$	$x+0=x$	identities
$x \cdot x=x$	$x+x=x$	idempotent law
$x \cdot y=y \cdot x$	$x+y=y+x$	commutativity
$(x y) z=x(y z)$	$(x+y)+z=x+(y+z)$	associativity
$x(y+z)=x y+x z$	$x+y z=(x+y)(x+z)$	distribution
$x y+x=x$	$(x+y) x=x$	uniting theorem
$\overline{x \cdot y}=\bar{x}+\bar{y}$	$\overline{(x+y)}=\bar{x} \cdot \bar{y}$	DeMorgan's Law

Peer Instruction
A. $(a+b) \cdot(\bar{a}+b)=b$
B. N-input gates can be thought of cascaded 2-input gates. I.e., $(\mathrm{a} \Delta \mathrm{bc} \Delta \mathrm{d} \Delta \mathrm{e})=\mathrm{a} \Delta(\mathrm{bc} \Delta(\mathrm{d} \Delta \mathrm{e}))$ where Δ is one of AND, OR, XOR, NAND
C. You can use NOR(s) with clever wiring to simulate AND, OR, \& NOT

ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

Boolean Algebraic Simplification Example

$y=a b+a+c$
$=a(b+1)+c \quad$ distribution, identity
$=a(1)+c \quad$ law of 1 's
$=a+c \quad$ identity

Cal CS 61 C L22 Represesentations of Combinatotoial L Logic Circuutis (20) \qquad

