inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures

Lecture 22 – Representations of Combinatorial Logic Circuits

2004-10-20

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

E-voting talk today At 4pm in 306 Soda SU Prof. David Dill will give a talk about important issues in electronic voting. This affects us all! Get there early...

CS 61C L22 Representations of Combinatorial Logic Circuits (1)

www.verifiedvoting.org
votingintegrity.com

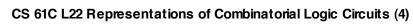
- We use feedback to maintain state
- Register files used to build memories
- D-FlipFlops used for Register files
- Clocks usually tied to D-FlipFlop load
 Setup and Hold times important
- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
 - You'll see them again in 150, 152 & 164

Representations of CL Circuits...

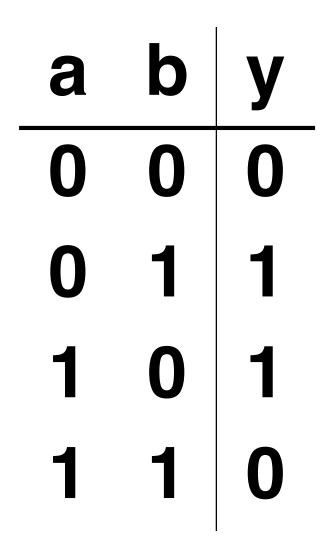
- Truth Tables
- Logic Gates
- Boolean Algebra

Truth Tables

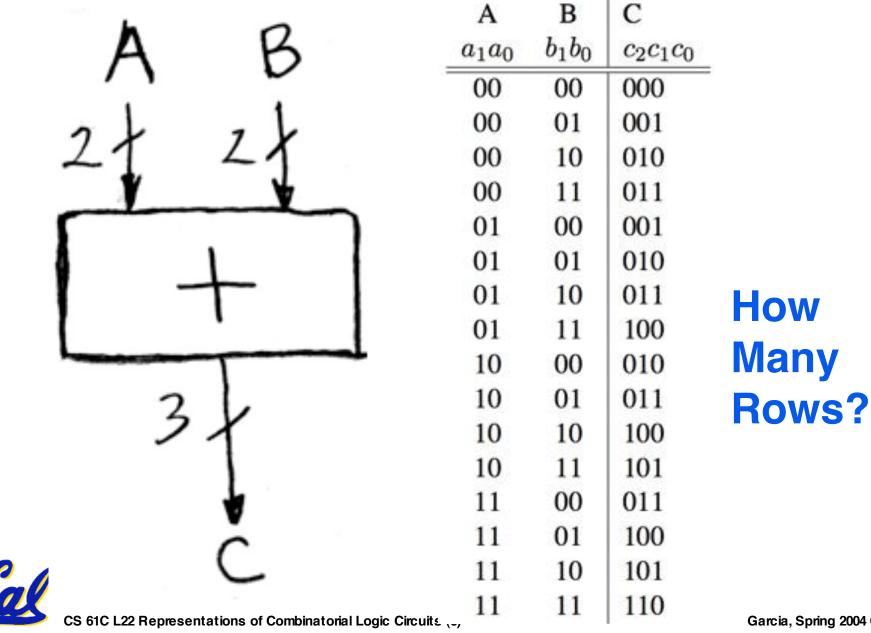
	a	b	с	d	у
	0	0	0	0	F(0,0,0,0)
	0	0	0	1	F(0,0,0,1)
	0	0	1	0	F(0,0,1,0)
	0	0	1	1	F(0,0,1,1)
a	0	1	0	0	F(0,1,0,0)
	0	1	0	1	F(0,1,0,1)
	0	1	1	0	F(0,1,1,0)
	0	1	1	1	F(0,1,1,1)
	1	0	0	0	F(1,0,0,0)
$\alpha \longrightarrow \beta$	1	0	0	1	F(1,0,0,1)
	1	0	1	0	F(1,0,1,0)
	1	0	1	1	F(1,0,1,1)
	1	1	0	0	F(1,1,0,0)
	1	1	0	1	F(1,1,0,1)
	1	1	1	0	F(1,1,1,0)
	1	1	1	1	F(1,1,1,1)



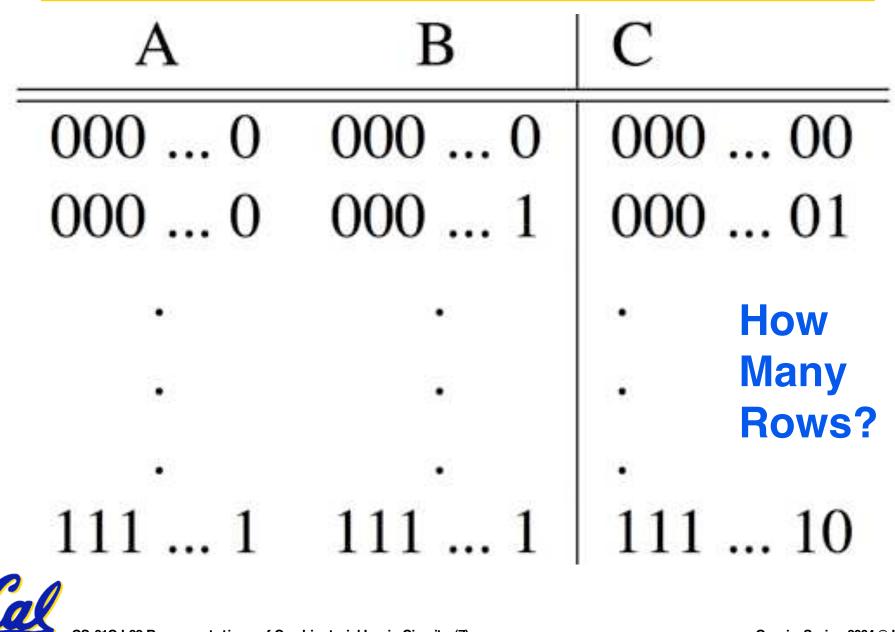
TT Example #1: 1 iff one (not both) a,b=1



TT Example #2: 2-bit adder



TT Example #3: 32-bit unsigned adder

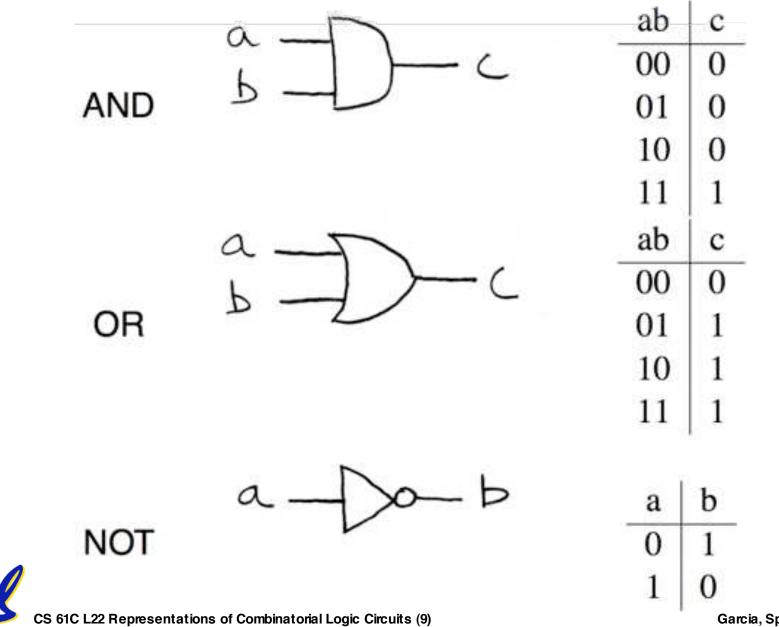


CS 61C L22 Representations of Combinatorial Logic Circuits (7)

TT Example #3: 3-input majority circuit

a	b	c	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

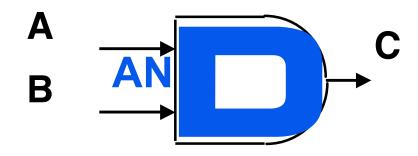
Logic Gates (1/2)

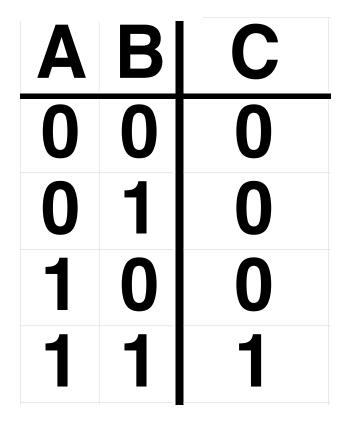


And vs. Or review – Dan's mnemonic

AND Gate

Definition





CS 61C L22 Representations of Combinatorial Logic Circuits (10)

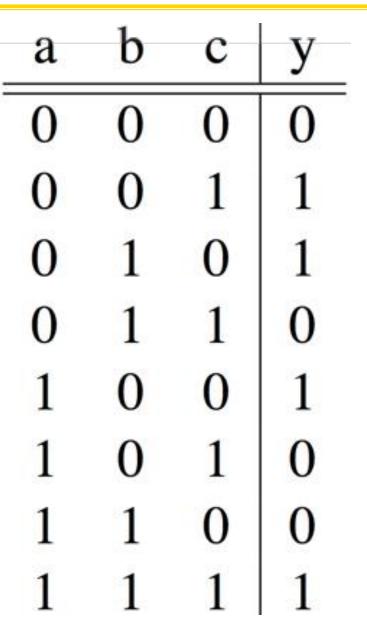
Logic Gates (2/2)

	a -m	ab	c
XOR	$()) \rightarrow c$	00	0
	DI	01	1
		10	1
		11	0
	a _	ab	c
NAND	L D-C	00	1
		01	1
		10	1
		11	0
	0-5	ab	c
NOR	- 1) x - C	00	1
		01	0
		10	0
		11	0
	a of Compliant and Logic Obscribe (11)		

CS 61C L22 Representations of Combinatorial Logic Circuits (11)

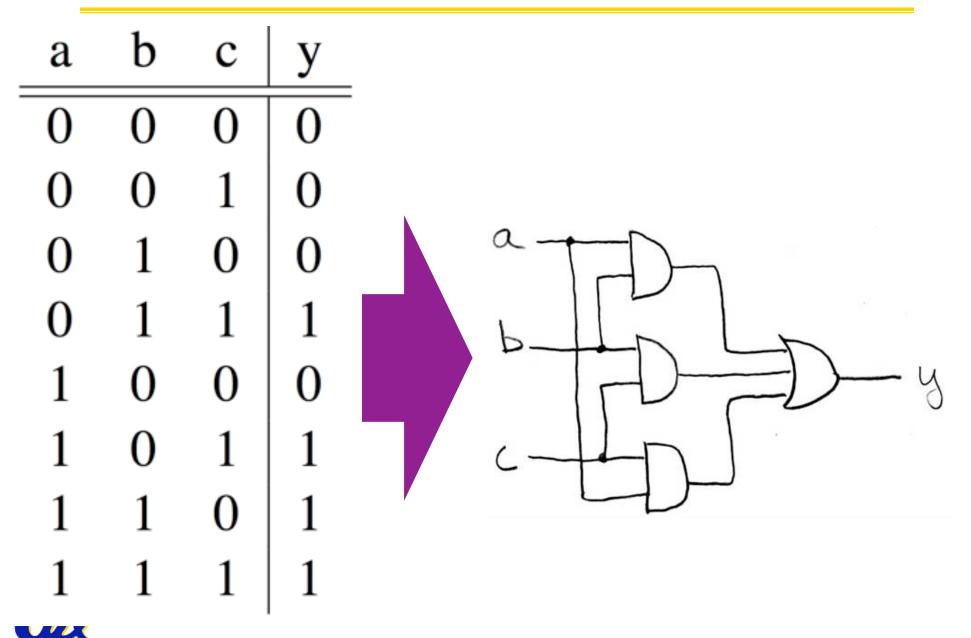
2-input gates extend to n-inputs

- N-input XOR is the only one which isn't so obvious
- It's simple: XOR is a 1 iff the # of 1s at its input is odd ⇒



CS 61C L22 Representations of Combinatorial Logic Circuits (12)

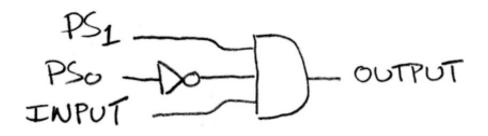
Truth Table ⇒ Gates (e.g., majority circ.)



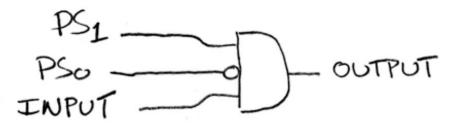
CS 61C L22 Representations of Combinatorial Logic Circuits (13)

Truth Table ⇒ Gates (e.g., FSM circ.)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

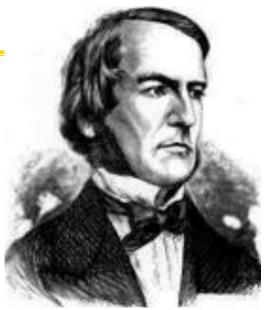


or equivalently...

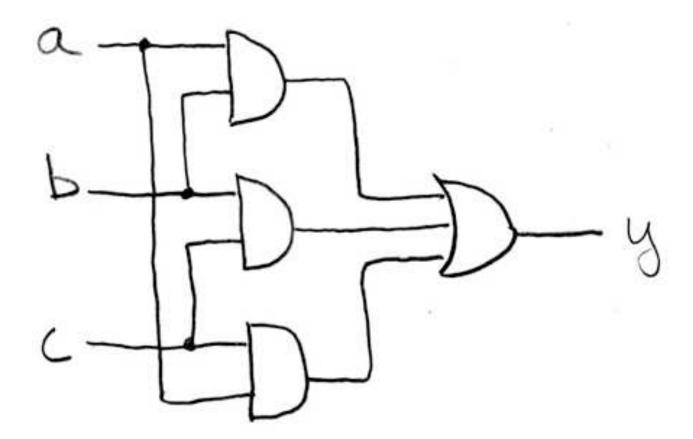


Boolean Algebra

- George Boole, 19th Century mathematician
- Developed a mathematical system (algebra) involving lógic
 - later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA



Boolean Algebra (e.g., for majority fun.)

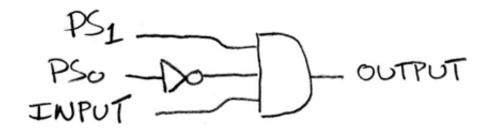


 $y = a \cdot b + a \cdot c + b \cdot c$

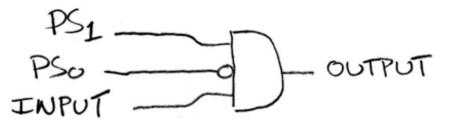
y = ab + ac + bc

Boolean Algebra (e.g., for FSM)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1



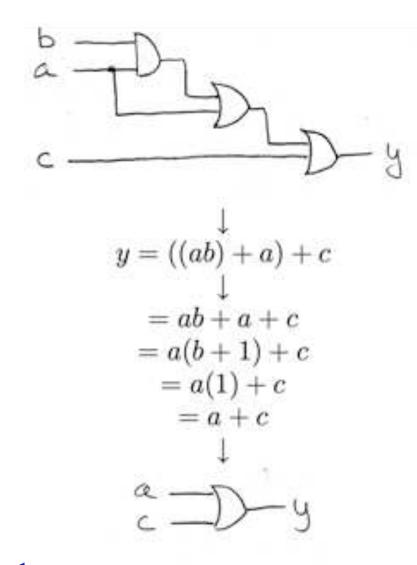
or equivalently...



$y = PS_1 \cdot \overline{PS_0} \cdot INPUT$

CS 61C L22 Representations of Combinatorial Logic Circuits (17)

BA: Circuit & Algebraic Simplification



original circuit

equation derived from original circuit

algebraic simplification

BA also great for circuit <u>verification</u> Circ X = Circ Y? use BA to prove!

simplified circuit

Laws of Boolean Algebra

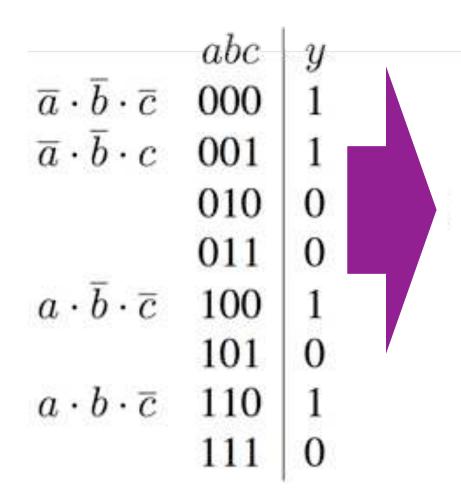
complementarity laws of 0's and 1's identities idempotent law commutativity associativity distribution uniting theorem DeMorgan's Law

Boolean Algebraic Simplification Example

$$y = ab + a + c$$

= $a(b+1) + c$ distribution, identity
= $a(1) + c$ law of 1's
= $a + c$ identity

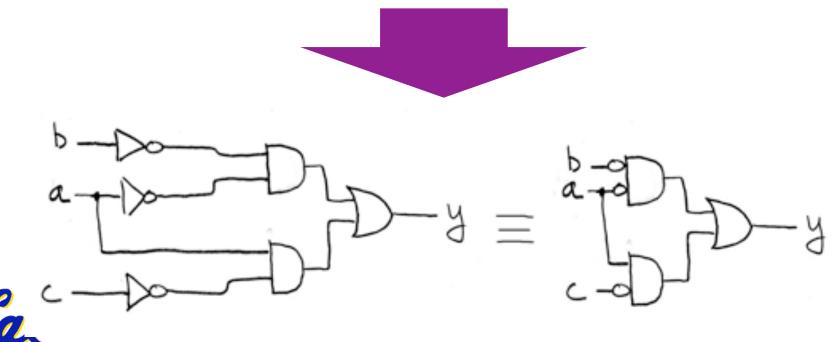
Canonical forms (1/2)



Sum-of-products (ORs of ANDs)

Canonical forms (2/2)

$$\begin{array}{ll} y &= \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + a\overline{b}\overline{c} + ab\overline{c} \\ &= \overline{a}\overline{b}(\overline{c} + c) + a\overline{c}(\overline{b} + b) & distribution \\ &= \overline{a}\overline{b}(1) + a\overline{c}(1) & complementarity \\ &= \overline{a}\overline{b} + a\overline{c} & identity \end{array}$$



CS 61C L22 Representations of Combinatorial Logic Circuits (22)

- A. $(a+b) \cdot (\overline{a}+b) = b$
- B. N-input gates can be thought of cascaded 2-input gates. I.e., $(a \Delta bc \Delta d \Delta e) = a \Delta (bc \Delta (d \Delta e))$ where Δ is one of AND, OR, XOR, NAND
- C. You can use NOR(s) with clever wiring to simulate AND, OR, & NOT

CS 61C L22 Representations of Combinatorial Logic Circuits (23)

Garcia, Spring 2004 © UCB

ABC

ननन

FFT

 $\mathbf{T}\mathbf{T}\mathbf{T}$

FTT

קקע

TFT

ጥጥፑ

ጥጥጥ

2.

२・

5.

6 ·

"And In conclusion..."

• Use this table and techniques we learned to transform from 1 to another

