inst.eecs.berkeley.edu/~cs61c **CS61C: Machine Structures**

Lecture 23 – **Combinational Logic Blocks**

2004-10-22

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Age of the Machines?⇒

"The UN's annual World Robotics

Survey for 2004 predicts that there will be a seven-fold surge in household robots by the end of 2007. Robots that mow your lawn, vacuum, wash windows, clean swimming pools, & entertainment robots such as the Aibo are vying for a place in our homes."

CS 61C L23 Combinational Logi slashdot.org/article.pl?sid=04/10/21/0214230&tid=126&tid=

irobot.com

Garcia, Fall 2004 © UCB

Review

 Use this table and techniques we learned to transform from 1 to another

Peer Instruction Correction

A.
$$(a+b) \cdot (\overline{a}+b) = ?= b$$

$$(a+b)\cdot(\overline{a}+b)$$

commutativity,

distribution,

idempotent

b(1)+b identity, complimentarity

b+b *identity*

idempotent

TRUE

Today

- Data Multiplexors
- Arithmetic and Logic Unit
- Adder/Subtractor

Data Multiplexor (here 2-to-1, n-bit-wide)

N instances of 1-bit-wide mux

How many rows in TT?

$$c = \overline{s}a\overline{b} + \overline{s}ab + s\overline{a}b + sab$$

$$= \overline{s}(a\overline{b} + ab) + s(\overline{a}b + ab)$$

$$= \overline{s}(a(\overline{b} + b)) + s((\overline{a} + a)b)$$

$$= \overline{s}(a(1) + s((1)b))$$

$$= \overline{s}a + sb$$

How do we build a 1-bit-wide mux?

4-to-1 Multiplexor?

How many rows in TT?

$$e = \overline{s_1 s_0} a + \overline{s_1} s_0 b + s_1 \overline{s_0} c + s_1 s_0 d$$

Is there any other way to do it?

Administrivia: Midterm...

- You spoke and we heard
 - The final can be in pen OR pencil
 - We should have given the choice of pen or pencil, and if you choose pencil, no regrade
 - More scratch space...will be there (trees be damned)
- Want a regrade?
 - Return your exam and a stapled paragraph explaining which question(s) needed regrading AND WHY and we'll take a look at the next TA mtg

Your grade MAY go down, no complaints

Arithmetic and Logic Unit

- Most processors contain a special logic block called "Arithmetic and Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR

when S=00, R=A+B when S=01, R=A-B when S=10, R=A AND B when S=11, R=A OR B

Our simple ALU

Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

Adder/Subtracter - One-bit adder LSB...

a_0	b_0	\mathbf{s}_0	c_1
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$s_0 = c_1 = c_1$$

Adder/Subtracter - One-bit adder (1/2)...

a_i	b_i	c_i	$ \mathbf{s}_i $	c_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$s_i = c_{i+1} =$$

Adder/Subtracter - One-bit adder (2/2)...

$$s_i = XOR(a_i, b_i, c_i)$$

 $c_{i+1} = MAJ(a_i, b_i, c_i) = a_i b_i + a_i c_i + b_i c_i$

N 1-bit adders ⇒ 1 N-bit adder

What about overflow? Overflow = c_n ?

What about overflow?

Consider a 2-bit signed # & overflow:

- Highest adder
 - \cdot C₁ = Carry-in = C_{in}, C₂ = Carry-out = C_{out}
 - No C_{out} or $C_{in} \Rightarrow NO$ overflow!
- What ⋅ C_{in}, and C_{out} ⇒ NO overflow!
 - C_{in} , but no $C_{out} \Rightarrow A,B$ both > 0, overflow!
 - C_{out} , but no $C_{in} \Rightarrow A,B$ both < 0, overflow!

What about overflow?

Consider a 2-bit signed # & overflow:

$$10 = -2$$
 $11 = -1$
 $00 = 0$
 $01 = 1$

- Overflows when...

 - C_{in}, but no C_{out} ⇒ A,B both > 0, overflow!
 C_{out}, but no C_{in} ⇒ A,B both < 0, overflow!

overflow = c_n XOR c_{n-1}

Extremely Clever Subtractor

Peer Instruction

- A. Truth table for mux with 4-bits of signals is 2⁴ rows long
- B. We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl
- C. If 1-bit adder delay is T, the N-bit adder delay would also be T

ABC

1: FFF

2: **FFT**

3: **FTF**

4: FTT

5: **TFF**

6: TFT

7: TTF

8: TTT

CS 61C L23 Combinational Logic Blocks (21)

Garcia, Fall 2004 © UCB

Peer Instruction Answer

"And In conclusion..."

- Use muxes to select among input
 - S input bits selects 2S inputs
 - Each input can be n-bits wide, indep of S
- Implement muxes hierarchically
- ALU can be implemented using a mux
 - Coupled with basic block elements
- N-bit adder-subtractor done using N 1bit adders with XOR gates on input
 - XOR serves as conditional inverter

