inst.eecs.berkeley.edu/~cs61c

CS61C : Machine Structures

Lecture 23 -
 Combinational Logic Blocks

2004-10-22

Lecturer PSOE Dan Garcia

www . cs . berkeley . edu/~ddgarcia
Age of the Machines? \Rightarrow
‘The UN's annual World Robotics
Survey for 2004 predicts that there will be a seven-fold surge in household robots by the end of 2007. Robots that mow your lawn, vacuum, wash windows, clean swimming
 pools, \& entertainment robots such as the Aibo are vying for a place in our homes."
irobot.com CS 61C L23 Combinational Log slashdot. org/article.pl?sid=04/10/21/0214230\&tid=126\&tid=216 Garcia, Fall 2004 © UCB

Review

- Use this table and techniques we learned to transform from 1 to another

CS 61C L23 Combinational Logic Blocks (2)

Peer Instruction Correction

$\begin{array}{ll}\text { A. } \\ (\mathrm{a}+\mathrm{b}) \cdot(\bar{a}+\mathrm{b})\end{array} \quad(\mathrm{a}+\mathrm{b}) \cdot(\overline{\mathrm{a}}+\mathrm{b})=?=\mathrm{b}$	
$a \bar{a}+a b+b \bar{a}+b \mathbf{b}$	distribution
$0+b(a+\bar{a})+\mathbf{b}$	complimentarity, commutativity, distribution, idempotent
$b(1)+b$	identity, complimentarity
b+b	identity
Cal	idempotent TRUE

Today

- Data Multiplexors
- Arithmetic and Logic Unit
- Adder/Subtractor

Data Multiplexor (here 2-to-1, n-bit-wide)

Cal \qquad

N instances of 1-bit-wide mux

How many rows in TT?

How do we build a 1-bit-wide mux?

$$
\bar{s} a+s b
$$

Cel \qquad

4-to-1 Multiplexor?
$a b c d$ How many rows in $T T$?

Cal

$$
e=\overline{s_{1} s_{0}} a+\overline{s_{1}} s_{0} b+s_{1} \overline{s_{0} c}+s_{1} s_{0} d
$$

Is there any other way to do it?

Administrivia : Midterm...

- You spoke and we heard
- The final can be in pen OR pencil
- We should have given the choice of pen or pencil, and if you choose pencil, no regrade
- More scratch space...will be there (trees be damned)
-Want a regrade?
- Return your exam and a stapled paragraph explaining which question(s) needed regrading AND WHY and we'll take a look at the next TA mtg
- Your grade MAY go down, no complaints

Arithmetic and Logic Unit

- Most processors contain a special logic block called "Arithmetic and Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR

when $\mathrm{S}=00, \mathrm{R}=\mathrm{A}+\mathrm{B}$
when $S=01, R=A-B$
when $\mathrm{S}=10, \mathrm{R}=\mathrm{A}$ and B
when $S=11, R=A$ OR B

Our simple ALU

Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

Adder/Subtracter - One-bit adder LSB...

$$
\begin{gathered}
\mathrm{a}_{0} \\
\mathrm{~b}_{0} \\
\mathrm{~s}_{0} \\
\\
\\
s_{0}= \\
c_{1}=
\end{gathered} \quad \begin{array}{cc|cc}
\mathrm{a}_{0} & \mathrm{~b}_{0} & \mathrm{~s}_{0} & \mathrm{c}_{1} \\
\hline \hline 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
& & & \\
\end{array}
$$

Adder/Subtracter - One-bit adder (1/2)...

Adder/Subtracter - One-bit adder (2/2)...

$$
\begin{aligned}
s_{i} & =\operatorname{XOR}\left(a_{i}, b_{i}, c_{i}\right) \\
c_{i+1} & =\operatorname{MAJ}\left(a_{i}, b_{i}, c_{i}\right)=a_{i} b_{i}+a_{i} c_{i}+b_{i} c_{i}
\end{aligned}
$$

N 1-bit adders $\Rightarrow 1 \mathrm{~N}$-bit adder

What about overflow? Overflow = c_{n} ?

What about overflow?

- Consider a 2-bit signed \# \& overflow:

$$
\begin{aligned}
\cdot 10 & =-2+-2 \text { or }-1 \\
\cdot 11 & =-1+-2 \text { only } \\
\cdot 00 & =0 \text { NOTHING! } \\
\cdot 01 & =1+1 \text { only }
\end{aligned}
$$

- Highest adder

- $\mathrm{C}_{1}=$ Carry-in $=\mathrm{C}_{\text {in }}, \mathrm{C}_{2}=$ Carry-out $=\mathrm{C}_{\text {out }}$
- No $\mathrm{C}_{\text {out }}$ or $\mathrm{C}_{\text {in }} \Rightarrow$ NO overflow!

What $\cdot \mathrm{C}_{\text {in }}$, and $\mathrm{C}_{\text {out }} \Rightarrow$ NO overflow! op?
$\cdot C_{\text {in }}$, but no $C_{\text {out }} \Rightarrow A, B$ both >0, overflow!

- $C_{\text {out }}$, but no $C_{\text {in }} \Rightarrow A, B$ both <0, overflow!

What about overflow?

- Consider a 2-bit signed \# \& overflow:
$10=-2$
$11=-1$
$00=0$
$01=1$
- Overflows when...

- $C_{\text {in }}$, but no $C_{\text {out }} \Rightarrow A, B$ both >0, overflow!
- $C_{\text {out }}$, but no $C_{\text {in }} \Rightarrow A, B$ both <0, overflow!

overflow $=c_{n}$ XOR c_{n-1}

Extremely Clever Subtractor

Peer Instruction

A. Truth table for mux with 4-bits of signals is 2^{4} rows long
B. We could cascade $\mathbf{N} 1$-bit shifters to make 1 N -bit shifter for sll, srl
C. If 1-bit adder delay is T , the N -bit adder delay would also be T

CS 61C L23 Combinational Logic Blocks (21)

	ABC
1	FFF
2	FFT
3	FTF
4	FTT
5	TFF
6	TFT
7	TTF
8	TTT

Peer Instruction Answer

"And In conclusion..."

- Use muxes to select among input
- S input bits selects 2 S inputs
- Each input can be n-bits wide, indep of S
- Implement muxes hierarchically
- ALU can be implemented using a mux
- Coupled with basic block elements
- N-bit adder-subtractor done using N 1bit adders with XOR gates on input
- XOR serves as conditional inverter

