
CS 61C L24 Verilog I (1) Garcia, Fall 2004 © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 24 –
 Verilog I

 2004-10-25

We shut out AZ 38-0!!⇒
 Football team continues to roll!

The #7 Bears shut out Arizona in a rout.
McArthur had 6 catches for 94 yards, breaking
the school record for career yards with 2,768.

Rodgers threw three first-half touchdowns,
J. J. Arrington topped 100 yards for 6th

consec. game. At #23 ASU (3-1,6-1) Sat. calbears.com

CS 61C L24 Verilog I (2) Garcia, Fall 2004 © UCB

Verilog Overview (1/3)

•A Hardware Description Language
(HDL) for describing & testing logic
circuits.

• text based way to talk about designs
• easier to simulate before silicon
• translate into silicon directly

•No sequential execution, normally
hardware just “runs” continuously.
•Verilog: A strange version of C, with
some changes to account for time

• VHDL is alternative; similar and can pick
it up easily. Verilog simpler to learn!

CS 61C L24 Verilog I (3) Garcia, Fall 2004 © UCB

Verilog Overview (2/3)

•Verilog description composed of
modules:
module Name (port list) ;
Declarations and Statements;
endmodule

•Modules can have instantiations of
other modules, or use primitives
supplied by language
•Note that Verilog varies from C
syntax, borrowing from Ada
programming language at times
(endmodule)

CS 61C L24 Verilog I (4) Garcia, Fall 2004 © UCB

Verilog Overview (3/3)

•Verilog has 2 basic modes
1. Structural composition: describes
that structure of the hardware
components, including how ports of
modules are connected together

• module contents are builtin gates (and,
or, xor, not, nand, nor, xnor, buf) or
other modules previously declared

2. Behavoral: describes what should
be done in a module

• module contents are C-like assignment
statements, loops

CS 61C L24 Verilog I (5) Garcia, Fall 2004 © UCB

Example: Structural XOR (xor built-in,but..)
module xor(X, Y, Z);
input X, Y;
output Z;
wire notX, notY,
XnotY, YnotX;

not
 (notX, X),
 (notY, Y);
and

 (YnotX, notX, Y),
 (XnotY, X, notY);
or

 (Z, YnotX, XnotY);
endmodule

X
Y

X
Y

Z

XnotY

YnotX
notX

notY

which “ports” input, output

“ports” connect components

Note: order of gates doesn’t matter,
since structure determines relationship

Default is 1 bit wide data

CS 61C L24 Verilog I (6) Garcia, Fall 2004 © UCB

Example: Behavoral XOR in Verilog
module xorB(X, Y, Z);
input X, Y;
output Z;
reg Z;
always @ (X or Y)

 Z = X ^ Y;
endmodule

•Unusual parts of above Verilog
• “always @ (X or Y)” => whenever X
or Y changes, do the following statement

• “reg” is only type of behavoral data that
can be changed in assignment, so must
redeclare Z

• Default is single bit data types: X, Y, Z

CS 61C L24 Verilog I (7) Garcia, Fall 2004 © UCB

Verilog: replication, hierarchy

•Often in hardware need many copies
of an item, connected together in a
regular way

• Need way to name each copy
• Need way to specify how many copies

•Specify a module with 4 XORs using
existing module example

CS 61C L24 Verilog I (8) Garcia, Fall 2004 © UCB

Example: Replicated XOR in Verilog
module 4xor(A, B, C);
input[3:0] A, B;
output[3:0] C;
xorB My4XOR[3:0]
 (.X(A), .Y(B), .Z(C));

endmodule

• Note 1: can associate ports
explicitly by name,

• (.X (A), .Y(B), .Z(C))

• or implicitly by order (as in C)
• (A, B, C)

• Note 2: must give a name to
new instance of xors (My4XOR) C[0]A[0]

B[0]

A[0]
B[0]

C[1]A[1]
B[1]

A[1]
B[1]

C[2]A[2]
B[2]

A[2]
B[2]

C[3]A[3]
B[3]

A[3]
B[3]

CS 61C L24 Verilog I (9) Garcia, Fall 2004 © UCB

Verilog big idea: Time

•Difference from normal prog. lang. is
that time is part of the language

• part of what trying to describe is when
things occur, or how long things will take

• In both structural and behavoral
Verilog, determine time with #n : event
will take place in n time units

• structural: not #2(notX, X) says notX
does not change until time advances 2 ns

• behavoral: Z = #2 A ^ B; says Z does
not change until time advances 2 ns

• Default unit is nanoseconds; can change

CS 61C L24 Verilog I (10) Garcia, Fall 2004 © UCB

Example:

• “Initial” means do
this code once
•Note: Verilog uses
begin … end vs.
{ … } as in C
•#2 stream = 1
means wait 2 ns
before changing
stream to 1
• Output called a
“waveform”

module test(stream);
output stream;
reg stream;
inital

begin
stream = 0;
#2 stream = 1;
#5 stream = 0;
#3 stream = 1;
#4 stream = 0;

end
endmodule

stream
0

1 time

2 7 10 14

CS 61C L24 Verilog I (11) Garcia, Fall 2004 © UCB

Testing in Verilog

•Code above just defined a new module
•Need separate code to test the module
(just like C/Java)
•Since hardware is hard to build, major
emphasis on testing in HDL
•Testing modules called “test benches”
in Verilog; like a bench in a lab
dedicated to testing
•Can use time to say how things change

CS 61C L24 Verilog I (12) Garcia, Fall 2004 © UCB

Testing Verilog

•Create a test module that instantiates
xor:
module testxor;
reg x, y, expected; wire z;
xor myxor(.x(x), .y(y), .z(z));
 /* add testing code */
endmodule

•Syntax: declare registers, instantiate
module.

CS 61C L24 Verilog I (13) Garcia, Fall 2004 © UCB

Testing continued

•Now we write code to try different
inputs by assigning to registers:
…
initial
 begin
 x=0; y=0; expected=0;
#10 y=1; expected=1;
#10 x=1; y=0;
#10 y=1; expected=0;
 end

CS 61C L24 Verilog I (14) Garcia, Fall 2004 © UCB

Testing continued

•Pound sign syntax (#10) indicates
code should wait simulated time (10
nanoseconds in this case).
•Values of registers can be changed
with assignment statements.
•So far we have the xor module and a
testxor module that iterates over all
the inputs. How do we see if it is
correct?

CS 61C L24 Verilog I (15) Garcia, Fall 2004 © UCB

Testing continued

•Use $monitor to watch some signals
and see every time they change:
…
initial
$monitor(
“x=%b, y=%b, z=%b, exp=%b, time=%d”,
x, y, z, expected, $time);

•Our code now iterates over all inputs and
for each one: prints out the inputs, the
gate output, and the expected output.
•$time is system function gives current
time

CS 61C L24 Verilog I (16) Garcia, Fall 2004 © UCB

Output

x=0, y=0, z=0, exp=0, time=0

x=0, y=1, z=1, exp=1, time=10

x=1, y=0, z=1, exp=1, time=20

x=1, y=1, z=0, exp=0, time=30

• Expected value matches actual value, so
Verilog works

CS 61C L24 Verilog I (17) Garcia, Fall 2004 © UCB

Peer Instruction

•How many mistakes in this module?
 module test(X);
 output X;
 initial
 begin
 X = 0; X = 1;
 end
 end

1. 1
2. 2
3. 3
4. 4
5. 5
6. 6
7. 7
8. 0

CS 61C L24 Verilog I (18) Garcia, Fall 2004 © UCB

Peer Instruction Answer

•How many mistakes in this module?
 module test(X);
 output X; reg X; // To change
 initial
 begin
 X = 0; #2 X = 1; // delay!
 end
 endmodule // Ada naming

1. 1
2. 2
3. 3
4. 4
5. 5
6. 6
7. 7
8. 0

CS 61C L24 Verilog I (19) Garcia, Fall 2004 © UCB

In conclusion
•Verilog allows both structural and
behavioral descriptions, helpful in testing
•Syntax a mixture of C (operators, for,
while, if, print) and Ada (begin… end,
case…endcase, module …endmodule)
•Some special features only in Hardware
Description Languages

• # time delay, initial, monitor

•Verilog can describe everything from
single gate to full computer system; you
get to design a simple processor

