CS61C : Machine Structures

Lecture 24 —
Verilog |

2004-10-25
Lecturer PSOE Dan Garcia

WwWw.Cs .berkeley. edu/~ddgarc1a

We shut out AZ 38-0!! =

Football team continues to roll!

The #7 Bears shut out Arizona in a rout.
McArthur had 6 catches for 94 yards, breaking
the school record for career yards with 2,768.
Rodgers threw three first-half touchdowns,

@ J. J. Arrington topped 100 yards for 6th

consec. game. At #23 ASU (3-1,6-1) Sat. calbears.com

CS 61C L24 Verilog | (1) Garcia, Fall 2004 © UCB

Verilog Overview (1/3)

A Hardware Description Language
(HDL)tfor describing & testing logic
circuits.

- text based way to talk about designs
- easier to simulate before silicon
- translate into silicon directly

* No sequential execution, qormally
hardware just “runs” continuously.

* Verilog: A strange version of C, with
some changes to account for time

- VHDL is alternative; similar and can pick
it up easily. Verilog simpler to learn!

CS 61C L24 Verilog | (2) Garcia, Fall 2004 © UCB

Verilog Overview (2/3)

* Verilog description composed of
modules:

module Name (port list) ;
Declarations and Statements;
endmodule

 Modules can have instantiations of
other modules, or use primitives
supplied by language

* Note that Verilog varies from C
syntax, borrowing from Ada
rogramming language at times
@ endmodule)

CS 61C L24 Verilog | (3) Garcia, Fall 2004 © UCB

Verilog Overview (3/3)

* Verilog has 2 basic modes

1. Structural composition: describes
that structure of the hardware
components, including how ports of
modules are connected together

- module contents are builtin gates (and,
or, xor, not, nand, nor, xnor, buf) or
other modules previously declared

2. Behavoral: describes what should
be done in a module

- module contents are C-like assignment

2 7 statements, loops
CS 61C L24 Verilog | (4) Garcia, Fall 2004 © UCB

Example: Structural XOR (xor built-in,but..)

module xor (X, Y, Z);
input X, Y; which “ports” input, output
output Z; Default is 1 bit wide data

wire notX, notY, “poris” connect components
XnotY¥, YnotX; notX

not YnotX
(notX, X), X N
(notY, YY), Y

and X
(YnotX, notX, Y), YP\
(XnotY, X, notY); XnotY

notyY

or
(Z, YnotX, XnotY);
ndmodule Note: order of gates doesn’t matter,

e
@ since structure determines relationshig

CS 61C L24 Verilog | (5) Garcia, Fall 2004 © U

Example: Behavoral XOR in Verilog

module xorB(X, Y, 2);
input X, Y;
output Z;
reg 4;
always @ (X or Y)
Z =X *Y;
endmodule
* Unusual parts of above Verilog

. “alwa]\;s @ (X or Y)” =>whenever X
or Y changes, do the following statement

. “re " Is only tyépe of behavoral data that
can e changed in assignment, so must
redeclare z

@ cse1cB4Vef|g||&!It IS Slngle blt data types X Y’ ZGarcia,FaII2004©UCB

Verilog: replication, hierarchy

 Often in hardware need many copies
of an item, connected together in a
regular way

* Need way to name each copy
* Need way to specify how many copies

* Specify a module with 4 XORs using
existing module example

@ CS 61C L24 Verilog | (7) Garcia, Fall 2004 © UCB

Example: Replicated XOR in Verilog

module 4xor (A, B, C);
input[3:0] A, B;
output[3:0] C;

xorB My4XOR[3:0]
(.X(a), .¥Y(B),

endmodule

.Z2(C));

* Note 1: can associate ports
explicitly by name,

* (.X (A), .Y(B), .Z(C))
 or implicitly by order (as in C)
* (A, B, C)

* Note 2: must give a name to
new instance of xors (My4XOR)

@ CS 61C L24 Verilog | (8)

A[3]

B[3] -

A[3] -

B[3]™

A[2] 4
B[2] -

D

A[2] -
B[2]~

A[l] 4
B[1] -

A[1] -
B[1]

A[O]
B[O] -

A[0] -
B[O]

>
>
SF>

C[3]

Cl2]

C[1]

C[0]

Garcia, Fall 2004 © UCB

Verilog big idea: Time

 Difference from normal prog. lang. is
that time is part of the language

- part of what trying to describe is when
things occur, or how long things will take

*In both structural and behavoral
Verilog, determine time with #n : event

will take place In n time units

 structural: not #2 (notX, X) says notX
does not change until time advances 2 ns

-behavoral: Z = #2 A ~ B; says Z does
not change until time advances 2 ns

Q(- Default unit is nanoseconds; can change

CS 61C L24 Verilog | (9) Garcia, Fall 2004 © UCB

Example:

module test (stream) ;

output stream; * “Ir_litial” means do
reg stream; this code once
inital

* Note: Verilog uses
begin ... end VS.

{...}asinC

begin
stream = 0

i~

#2 stream 1;
#5 stream = 0; eo#2 stream =1
#3 stream = 1; means wait 2 ns
#4 stream = 0; before changing
end stream to 1
snamoSil® time —» + Output called a
‘waveform”
stream
0O —

CS 61C L24 Verilog | (10) 2 7 10 14 Garcia, Fall 2004 © UCB

Testing in Verilog

e Code above just defined a new module

* Need separate code to test the module
(Just like C/Java)

e Since hardware is hard to build, major
emphasis on testing in HDL

* Testing modules called “test benches”
in Verilog; like a bench in a lab
dedicated to testing

e Can use time to say how things change

@ CS 61C L24 Verilog | (11) Garcia, Fall 2004 © UCB

Testing Verilog

e Create a test module that instantiates
XOr:

module testxor;

reg x, y, expected; wire z;

xor myxor(.x(x), .yvy(y), .-z(z));
/* add testing code */
endmodule

e Syntax: declare registers, instantiate
module.

Q CS 61C L24 Verilog | (12) Garcia, Fall 2004 © UCB

Testing continued

* Now we write code to try different
inputs by assigning to registers:

initial
begin
x=0; y=0;
#10 =1;
#10 x=1; y=0;
#10 y=1;
end

@ CS 61C L24 Verilog | (13)

expected=0;

; expected=1;

; expected=0;

Garcia, Fall 2004 © UCB

Testing continued

* Pound sign syntax (#10) indicates
code should wait simulated time (10
nanoseconds In this case).

* Values of registers can be changed
with assignment statements.

e So far we have the xor module and a
testxor module that iterates over all
the inputs. How do we see ifitis
correct?

@ CS 61C L24 Verilog | (14) Garcia, Fall 2004 © UCB

Testing continued

 Use Smonitor to watch some signhals
and see every time they change:

initial

Smonitor (

“x=3%b, y=%b, z=%b, exp=3%b, time=3d”,
X, vy, z, expected, Stime);

» Our code now iterates over all inputs and
for each one: prints out the inputs, the
gate output, and the expected output.

e Stime is system function gives current
time

@ CS 61C L24 Verilog | (15) Garcia, Fall 2004 © UCB

Output

x=0, y=0, z=0, exp=0,
x=0, y=1, z=1, exp=1,
x=1, y=0, z=1, exp=1,
x=1, y=1, z=0, exp=0,

time=0

time=10
time=20
time=30

* Expected value matches actual value, so

Verilog works

Q CS 61C L24 Verilog | (16)

Garcia, Fall 2004 © UCB

Peer Instruction

 How many mistakes in this module?

module test (X) ;
output X;
initial
begin

X =0; X=1;

end

; end
CS 61C L24 Verilog | (17)

ONOOTRLWD =
ONOUITRWN=

Garcia, Fall 2004 © UCB

Peer Instruction Answer

% CS 61C L24 Verilog | (18) Garcia, Fall 2004 © UCB

In conclusion

* Verilog allows both structural and _
behavioral descriptions, helpful in testing

. SY]ntax a mixture of C (operators, for,
while, if, print) and Ada (begin... end,
case...endcase, module ...endmodule)

» Some special features only in Hardware
Description Languages

- # time delay, initial, monitor
* Verilog can describe everything from

single gate to full computer system; you
get to design a simple processor

Q CS 61C L24 Verilog | (19) Garcia, Fall 2004 © UCB

