
CS 61C L27 Single Cycle CPU Datapath, with Verilog II (1) Garcia, Spring 2004 © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 27 –
 Single Cycle CPU Datapath, with Verilog II

 2004-11-01

Another shutout for Cal!⇒

calbears.com

Unbelievable! The #4 Bears were
dominant in beating ASU 27-0. JJ Arrington

shatters Cal records w/his 7th-straight 100yd
game, becoming the fastest Cal player ever to

reach 1,000 yds. It’s ASU’s 1st shutout loss in 9
yrs & our first time in the top 5 in 52 years!!

OU next Sat…

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (2) Garcia, Spring 2004 © UCB

Why is it “memArray[address[9:2]]”?

• Our memory is always byte-addressed
•We can lb from 0x0, 0x1, 0x2, 0x3, …

•lw only reads word-aligned requests
•We only call lw with 0x0, 0x4, 0x8, 0xC, …
• I.e., the last two bits are always 0

• memArray is a word wide and 28 deep
•reg [31:0] memArray [0:256-1];
•Size = 4 Bytes/row * 256 rows = 1024 B
• If we’re simulating lw/sw, we R/W words
•What bits select the first 256 words? [9:2]!
• 1st word = 0x0 = 0b000 = memArray[0];
2nd word = 0x4 = 0b100 = memArray[1], etc.

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (3) Garcia, Spring 2004 © UCB

How to Design a Processor: step-by-step
• 1. Analyze instruction set architecture (ISA)
=> datapath requirements
•meaning of each instruction is given by the
register transfers
• datapath must include storage element for ISA
registers
• datapath must support each register transfer

• 2. Select set of datapath components and
establish clocking methodology

• 3. Assemble datapath meeting requirements
• 4. Analyze implementation of each
instruction to determine setting of control
points that effects the register transfer.

• 5. Assemble the control logic (hard part!)

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (4) Garcia, Spring 2004 © UCB

Clk

Data In

Write Enable

N N
Data Out

Storage Element: Register (Building Block)

•Similar to D Flip Flop except
- N-bit input and output
- Write Enable input

•Write Enable:
- negated (or deasserted) (0):

Data Out will not change
- asserted (1):

Data Out will become Data In

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (5) Garcia, Spring 2004 © UCB

Verilog 32-bit Register for MIPS Interpreter
// Behavioral model of 32-bit Register:
// positive edge-triggered,
// synchronous active-high reset.
module reg32 (CLK,Q,D,wEnb);
 input CLK, wEnb;
 input [31:0] D;
 output [31:0] Q;
 reg [31:0] Q;

 always @ (posedge CLK)
 if (wEnb)
 Q = D;
endmodule // reg32

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (6) Garcia, Spring 2004 © UCB

Storage Element: Register File
• Register File consists of 32 registers:

• Two 32-bit output busses:
 busA and busB
• One 32-bit input bus: busW

• Register is selected by:
• RA (number) selects the register to put on busA (data)
• RB (number) selects the register to put on busB (data)
• RW (number) selects the register to be written

via busW (data) when Write Enable is 1
• Clock input (CLK)

• The CLK input is a factor ONLY during write operation
• During read operation, behaves as a combinational

logic block:
- RA or RB valid => busA or busB valid after “access time.”

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RWRA RB

32 32-bit
Registers

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (7) Garcia, Spring 2004 © UCB

Verilog Register File for MIPS Interpreter (1/3)
// Behavioral model of register file:
// 32-bit wide, 32 words deep,
// two asynchronous read-ports,
// one synchronous write-port.
// Dump register file contents to
// console on pos edge of dump signal.

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (8) Garcia, Spring 2004 © UCB

module regFile (CLK, wEnb, DMP,
writeReg, writeD, readReg1, readD1,
readReg2, readD2);
 input CLK, wEnb, DMP;
 input [4:0] writeReg, readReg1,

readReg2;
 input [31:0] writeD;
 output [31:0] readD1, readD2;
 reg [31:0] readD1, readD2;
 reg [31:0] array [0:31];
 reg dirty1, dirty2;
 integer i;
• 3 5-bit fields to select registers: 1 write
register, 2 read register

Verilog Register File for MIPS Interpreter (2/3)

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (9) Garcia, Spring 2004 © UCB

Verilog Register File for MIPS Interpreter (3/3)
always @ (posedge CLK)
 if (wEnb)
 if (writeReg!=5'h0) // why?
 begin
 array[writeReg] = writeD;
 dirty1=1'b1;
 dirty2=1'b1;
 end
always @ (readReg1 or dirty1)
 begin

readD1 = array[readReg1];
dirty1=0;

 end

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (10) Garcia, Spring 2004 © UCB

Step 3: Assemble DataPath meeting requirements

• Register Transfer Requirements
⇒ Datapath Assembly

• Instruction Fetch
• Read Operands and Execute Operation

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (11) Garcia, Spring 2004 © UCB

3a: Overview of the Instruction Fetch Unit
• The common RTL operations
• Fetch the Instruction: mem[PC]
•Update the program counter:
- Sequential Code: PC = PC + 4
- Branch and Jump: PC = “something else”

32
Instruction WordAddress

Instruction
Memory

PCClk
Next Address

Logic

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (12) Garcia, Spring 2004 © UCB

3b: Add & Subtract
• R[rd] = R[rs] op R[rt] Ex.: addU rd,rs,rt
•Ra, Rb, and Rw come from instruction’s Rs, Rt,
and Rd fields

•ALUctr and RegWr: control logic after decoding
the instruction

32
Result

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs RtRd

A
LU

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

• Already defined register file, ALU

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (13) Garcia, Spring 2004 © UCB

Clocking Methodology

• Storage elements clocked by same edge
• Being physical devices, flip-flops (FF) and

combinational logic have some delays
• Gates: delay from input change to output change
• Signals at FF D input must be stable before active clock

edge to allow signal to travel within the FF, and we have
the usual clock-to-Q delay

• “Critical path” (longest path through logic)
determines length of clock period

Clk
.
.
.

.

.

.

.

.

.

.

.

.

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (14) Garcia, Spring 2004 © UCB

Register-Register Timing: One complete cycle

32
Result

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs RtRd

A
LU

Clk

PC

Rs, Rt, Rd,
Op, Func
ALUctr

Instruction Memory Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA, B
Register File Access
TimeOld Value New Value

busW
ALU Delay

Old Value New Value

Old Value New Value

New ValueOld Value

Register Write
Occurs Here

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (15) Garcia, Spring 2004 © UCB

3c: Logical Operations with Immediate
• R[rt] = R[rs] op ZeroExt[imm16]]

32
Result

ALUct
r

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs

ZeroExt

M
ux

RtRd
RegDst Mux

3216imm16
ALUSrc

A
LU

11
op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits rd?
immediate

016 1531

16 bits16 bits
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rt?

• Already defined 32-bit MUX; Zero Ext?

What about Rt register read??

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (16) Garcia, Spring 2004 © UCB

3d: Load Operations
• R[rt] = Mem[R[rs] + SignExt[imm16]]
Example: lw rt,rs,imm16

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs

RtRd
RegDst

Extender

M
ux

Mux

32
16

imm16

ALUSrc

ExtOp

Clk

Data In
WrEn

32

Adr

Data
Memory

32

A
LU

MemWr M
ux

W_Src

??

Rt

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (17) Garcia, Spring 2004 © UCB

3e: Store Operations
• Mem[R[rs] + SignExt[imm16]] = R[rt]

Ex.: sw rt, rs, imm16

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5
Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

Extender

M
ux

Mux

3216imm16

ALUSrcExtOp

Clk

Data In
WrEn

32
Adr

Data
Memory

MemWr

A
LU

32

M
ux

W_Src

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (18) Garcia, Spring 2004 © UCB

3f: The Branch Instruction

•beq rs, rt, imm16
•mem[PC] Fetch the instruction from memory
•Equal = R[rs] == R[rt] Calculate branch condition
• if (Equal) Calculate the next instruction’s address
- PC = PC + 4 + (SignExt(imm16) x 4)

else
- PC = PC + 4

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (19) Garcia, Spring 2004 © UCB

Datapath for Branch Operations
• beq rs, rt, imm16
Datapath generates condition (equal)

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

32

imm16
PC

Clk

00

A
dder

M
ux

A
dder

4 nPC_sel

Clk

busW

RegWr

32
busA

32
busB

5 5 5
Rw Ra Rb
32 32-bit
Registers

Rs Rt

Eq
ua

l?

Cond

PC
 Ext

Inst Address

• Already MUX, adder, sign extend, zero

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (20) Garcia, Spring 2004 © UCB

Putting it All Together:A Single Cycle Datapath
im

m
16

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5
Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

Extender

M
ux

3216imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr
A

LU
Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

=

A
dder

A
dder

PC

Clk

00M
ux

4

nPC_sel

PC
 Ext

Adr

Inst
Memory

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (21) Garcia, Spring 2004 © UCB

An Abstract View of the Implementation

Data
Out

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
LU

Clk

Data
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

Cl
k

PC

5
Rs

5
Rt

32

32
3232
A

B

N
ex

t A
dd

re
ss

Control

Datapath

Control Signals Conditions

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (22) Garcia, Spring 2004 © UCB

Peer Instruction

Suppose we’re writing a MIPS interpreter in
Verilog. Which sequence below is best
organization for the interpreter?
A. repeat loop that fetches instructions
B. while loop that fetches instructions
C. Decodes instructions using case statement
D. Decodes instr. using chained if statements
E. Executes each instruction
F. Increments PC by 4

1: ACEF
2: ADEF
3: AECF
4: AEDF
5: BCEF
6: BDEF
7: BECF
8: BEDF
9: EF
0: FAE

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (23) Garcia, Spring 2004 © UCB

°5 steps to design a processor
• 1. Analyze instruction set => datapath requirements
• 2. Select set of datapath components & establish clock

methodology
• 3. Assemble datapath meeting the requirements
• 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.
• 5. Assemble the control logic

°Control is the hard part
°Next time!

Summary: Single cycle datapath

Control

Datapath

Memory

Processor
Input

Output

CS 61C L27 Single Cycle CPU Datapath, with Verilog II (24) Garcia, Spring 2004 © UCB

Dwarfing the importance of this lecture…

…is the importance that tomorrow you
get out and

VOTE!

