CS61C : Machine Structures

Lecture 30 -
Introduction to Pipelined Execution

2004-11-08
Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Pixar does it
again! Our |
neighbors have
a hit with The

g Incredibles! theincredibles.com
CS 61C L30 Introduction to Pipelined Execution (1) Garcia, Fall 2004 © UCB

Review Datapath (1/3)

+ Datapath is the hardware that
performs operations necessary to
execute programs.

« Control instructs datapath on what to
do next.
«Datapath needs:

- access to storage (general purpose
registers and memory)

« computational ability (ALU)
« helper hardware (local registers and PC)

Review: Single cycle datapath

°5 steps to design a processor
* 1. Analyze instruction set => datapath requirements

* 2. Select set of datapath components & establish clock
methodology

+ 3. Assemble datapath meeting the requirements

* 4. Analyze implementation of each instruction to
determine setting of control points that effects the
register transfer. Processor

+ 5. Assemble the control logic
°Control is the hard part Memory

°MIPS makes that easier Output

* Instructions same size
+ Source registers always in same place

* Immediates same size, location

¢/ Operations always on registers/immediates

CS 61C L30 Introduction to Pipelined Execution (2) Garca, Fall 2004 © UCB

Input

Review Datapath (2/3)

*Five stages of datapath (executing an
instruction):

1. Instruction Fetch (Increment PC)

2. Instruction Decode (Read Registers)
3. ALU (Computation)

4. Memory Access

5. Write to Registers

¢ ALL instructions must go through
ALL five stages.

Review Datapath (3/3)

c rd g

S %

Se s 7 55

=} (0] -—

s o [N = © £

cE ._’ og

1.Instruction 2. Decode/ i " 5. Write
Fetch Register o EXecute 4.Memory™ g\

Read

g €S 61C L30 Introduction to Pipelined Execution (5) Garcia, Fall 2004 © UCB

g €S 61C L30 Introduction to Pipelined Execution (4) Garcia, Fall 2004 © UCB

Gotta Do Laundry

° Ann, Brian, Cathy, Dave
each have one load of
clothes to wash, dry,
fold, and put away

BEEH

°Washer takes 30 minutes

° Dryer takes 30 minutes

’ .i -
‘_|

°“Folder” takes 30 minutes

° “Stasher” takes 30 minutes
to put clothes into drawers

g €S 61C L30 Introduction to Pipelined Execution (&) Garcia, Fall 2004 © UCB

Sequential Laundry

6PM 7 8 9 10 11 12 1 2AM
3030301303030 30! '%'ﬁ'so'so'%'ﬁ'so'so'

T _ 3030'30130/3030'30 30
;o8 .
k 6 .@ A . A

g =F
oS &
;
d
E: «Sequential laundry takes

8 hours for 4 loads

General Definitions

Latency: time to completely execute a
certain task

- for example, time to read a sector from
disk is disk access time or disk latency

e Throughput: amount of work that can
be done over a period of time

Pipelining Lessons (2/2)
*Suppose new
6PM 7 8 9 Washer takes 20
| — minutes, new

—F=F==_| | Stasher takes 20
minutes. How
much faster is
pipeline?

x0n 0 -

¢ Pipeline rate
limited by slowest
pipeline stage

CtLeeet &

*Unbalanced
lengths of pipe
stages also

=0 Q=0

Pipelined Laundry

6PM 7 8 9 10 11 12 1 2AM

7 30303030 303030 Time
a S A
o B4
& “A
o @A

d
e Pigelined laundry takes
r 3.5 hours for 4 loads!

g reduces speedup
CS 61C L30 Introduction to Pipelined Execution (11) Garcia, Fall 2004 © UCB

g CS 61C L30 Introduction to Pipelined Execution &) Garcia, Fall 2004 © UCB

Pipelining Lessons (1/2)

* Pipelining doesn’t help
6PM 7 8 9 latency of single task
| , it helps throughput of
A Time ~ entire workload

T o e e B B

a 303030303030 Multiple tasks

s S/ operating .

k simultaneously using

different resources

« Potential speedup =
i K Number pipe stages

« Time to “fill” pipeline
and time to “drain” it
reduces speedup:
2.3X v. 4X'in this

g CS 61C L30 Introduction to Pipelined Execution (10) Garcia, Fall 2004 © UCB

Steps in Executing MIPS

1) IFetch: Fetch Instruction, Increment PC
2) Decode Instruction, Read Registers
3) Execute:

Mem-ref: Calculate Address
Arith-log: Perform Operation

4) Memory:
)Load: Read Data from Memory
Store: Write Data to Memory

5) Write Back: Write Data to Register

g CS 61C L30 Introduction to Pipelined Execution (12) Garcia, Fall 2004 © UCB

Pipelined Execution Representation

Time
[IFtch|Ded JExec|[Mem[WB |
[IFtch]Ded [Exec][Mem]| WB |
[IFtch|Dcd JExec]Mem] WB |
[IFtch|Dcd [Exec]Mem]| WB |
[IFtch|Dcd [Exec]Mem| WB |
[IFtch|Dcd [Exec]Mem| WB |

« Every instruction must take same number
of steps, also called pipeline “stages”, so
some will go idle sometimes

g CS 61C L30 Introduction to Pipelined Execution (13)

Garca, Fall 2004 © UCB

Graphical Pipeline Representation
(In Reg, right half highlight read, left half write)
Time (clock cycles) R

2 Load

t |Add i

r.

Store |28 Jr{Res

o 3 e

r Sub 1% W :

: Or %

74

Pipeline Hazard: Matching socks in later load

6PM 7 8 9 10 11 12 1 2AM

B o e e e '
3030 30 30 3030 30 Time

x0n 0 -

&Y S
& 8 A
e ST
(O)

OA
g o5

o Q~0

;
depends on D; stall since folder tied up

Review: Datapath for MIPS
rd J
el

L

7. Instruction 2. Decode/ o i " 5. Write
Fetch Register Read 3. Execute 4. Memory Back
*Use datapath figure to represent pipeline

[IFtchiDcd JExec]Mem| WB |

VoL |
Ree Res

PC
registers

memory

instruction
Data
memory

g CS 61C L30 Introduction to Pipelined Execution (17)

Garcia, Fall 2004 © UCB

g CS 61C L30 Introduction to Pipelined Execution (14)

Garca, Fall 2004 © UCB

Example

*Suppose 2 ns for memory access, 2 ns
for ALU operation, and 1 ns for register
file read or write; compute instr rate

*Nonpipelined Execution:

*Ilw : IF + Read Reg + ALU + Memory + Write
Reg=2+1+2+2+1=8ns

+add: IF + Read Reg + ALU + Write Reg
=2+1+2+1=6ns
¢ Pipelined Execution:

» Max(IF,Read Reg,ALU,Memory,Write Reg)
=2ns

g CS 61C L30 Introduction to Pipelined Execution (16)

Garca, Fall 2004 © UCB

Administrivia

«Final Exam will be in 230 Hearst Gym
* Tue, 2004-12-14, 12:30-3:30pm

*Thanks to Andrew for filling in on Fri!

« Cal still ranked in the top 5
+ Survived a scare on Sat
* We’re the top candidate for the Rose Bowl

g CS 61C L30 Introduction to Pipelined Execution (18)

Garca, Fall 2004 © UCB

Problems for Computers

¢ Limits to pipelining: Hazards prevent
next instruction from executing during
its designated clock cycle

- Structural hazards: HW cannot support
this combination of instructions (single
person to fold and put clothes away)

- Control hazards: Pipelining of branches
& other instructions stall the pipeline
until the hazard; “bubbles” in the pipeline

- Data hazards: Instruction depends on
result of prior instruction still in the
pipeline (missing sock)

g CS 61C L30 Introduction to Pipelined Execution (19) Garcia, Fall 2004 © UCB

Structural Hazard #1: Single Memory (2/2)

*Solution:

+ infeasible and inefficient to create
second memory

+(We’ll learn about this more next week)

+ so simulate this by having two Level 1
Caches (a temporary smaller [of usually
most recently used] copy of memory)

» have both an L1 Instruction Cache and
an L1 Data Cache

* need more complex hardware to control
when both caches miss

g CS 61C L30 Introduction to Pipelined Execution (21) Garcia, Fall 2004 © UCB

Structural Hazard #2: Registers (2/2)

*Fact: Register access is VERY fast:
takes less than half the time of ALU
stage

*Solution: introduce convention

- always Write to Registers during first
half of each clock cycle

- always Read from Registers during
second half of each clock cycle

* Result: can perform Read and Write
during same clock cycle

g CS 61C L30 Introduction to Pipelined Execution (23) Garcia, Fall 2004 © UCB

Structural Hazard #1: Single Memory (1/2)

Time (clock cycles)

I

2 Load

t |instr1

" Instr 2 e

? Instr 3 |28 Jr{Ree

d Vinstr 4 IE' e
e

-

CS 61C L30 Introduction to Pipelined Execution (20) Garca, Fall 2004 © UCB

Z Read same memory twice in same clock cycle

Structural Hazard #2: Registers (1/2)

Time (clock cycles)

I

n

® o

I. [Instr 1

O |Instr 2 “ R

r Reg

d Instr 3 i W

€ Vinstr 4 IE' e
r

Qan’t read and writez to régiéters simultaneously

CS 61C L30 Introduction to Pipelined Execution (22) Garca, Fall 2004 © UCB

Things to Remember
« Optimal Pipeline

« Each stage is executing part of an
instruction each clock cycle.

+ One instruction finishes during each clock
cycle.

» On average, execute far more quickly.

*What makes this work?

« Similarities between instructions allow us
to use same stages for all instructions
(generally).

+ Each stage takes about the same amount

g of time as all others: little wasted time.

CS 61C L30 Introduction to Pipelined Execution (26) Garca, Fall 2004 © UCB

