
CS 61C L30 Introduction to Pipelined Execution (1) Garcia, Fall 2004 © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 30 –
 Introduction to Pipelined Execution

 2004-11-08

The Incredibles!⇒

theincredibles.com

Pixar does it
again! Our

neighbors have
a hit with The

Incredibles!

CS 61C L30 Introduction to Pipelined Execution (2) Garcia, Fall 2004 © UCB

°5 steps to design a processor
• 1. Analyze instruction set => datapath requirements
• 2. Select set of datapath components & establish clock

methodology
• 3. Assemble datapath meeting the requirements
• 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.
• 5. Assemble the control logic

°Control is the hard part
°MIPS makes that easier
• Instructions same size
• Source registers always in same place
• Immediates same size, location
• Operations always on registers/immediates

Review: Single cycle datapath

Control

Datapath

Memory

Processor
Input

Output

CS 61C L30 Introduction to Pipelined Execution (3) Garcia, Fall 2004 © UCB

Review Datapath (1/3)

•Datapath is the hardware that
performs operations necessary to
execute programs.
•Control instructs datapath on what to
do next.
•Datapath needs:

• access to storage (general purpose
registers and memory)

• computational ability (ALU)
• helper hardware (local registers and PC)

CS 61C L30 Introduction to Pipelined Execution (4) Garcia, Fall 2004 © UCB

Review Datapath (2/3)

•Five stages of datapath (executing an
instruction):

1. Instruction Fetch (Increment PC)
2. Instruction Decode (Read Registers)
3. ALU (Computation)
4. Memory Access
5. Write to Registers

•ALL instructions must go through
ALL five stages.

CS 61C L30 Introduction to Pipelined Execution (5) Garcia, Fall 2004 © UCB

Review Datapath (3/3)
PC

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

Da
ta

m
em

or
y

imm

1. Instruction
Fetch

2. Decode/
 Register

Read
3. Execute 4. Memory5. Write

Back

CS 61C L30 Introduction to Pipelined Execution (6) Garcia, Fall 2004 © UCB

Gotta Do Laundry
° Ann, Brian, Cathy, Dave

each have one load of
clothes to wash, dry,
fold, and put away

A B C D

° Dryer takes 30 minutes

° “Folder” takes 30 minutes

° “Stasher” takes 30 minutes
to put clothes into drawers

° Washer takes 30 minutes

CS 61C L30 Introduction to Pipelined Execution (7) Garcia, Fall 2004 © UCB

Sequential Laundry

•Sequential laundry takes
8 hours for 4 loads

T
a
s
k

O
r
d
e
r

B

C
D

A
30
Time

3030 3030 30 3030 3030 3030 3030 3030

6 PM 7 8 9 10 11 12 1 2 AM

CS 61C L30 Introduction to Pipelined Execution (8) Garcia, Fall 2004 © UCB

Pipelined Laundry

•Pipelined laundry takes
3.5 hours for 4 loads!

T
a
s
k

O
r
d
e
r

B
C
D

A

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

CS 61C L30 Introduction to Pipelined Execution (9) Garcia, Fall 2004 © UCB

General Definitions

•Latency: time to completely execute a
certain task

• for example, time to read a sector from
disk is disk access time or disk latency

•Throughput: amount of work that can
be done over a period of time

CS 61C L30 Introduction to Pipelined Execution (10) Garcia, Fall 2004 © UCB

Pipelining Lessons (1/2)
• Pipelining doesn’t help

latency of single task,
it helps throughput of
entire workload
•Multiple tasks

operating
simultaneously using
different resources
• Potential speedup =

Number pipe stages
• Time to “fill” pipeline

and time to “drain” it
reduces speedup:
2.3X v. 4X in this
example

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

CS 61C L30 Introduction to Pipelined Execution (11) Garcia, Fall 2004 © UCB

Pipelining Lessons (2/2)
•Suppose new
Washer takes 20
minutes, new
Stasher takes 20
minutes. How
much faster is
pipeline?
•Pipeline rate
limited by slowest
pipeline stage
•Unbalanced
lengths of pipe
stages also
reduces speedup

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

CS 61C L30 Introduction to Pipelined Execution (12) Garcia, Fall 2004 © UCB

Steps in Executing MIPS

1) IFetch: Fetch Instruction, Increment PC
2) Decode Instruction, Read Registers
3) Execute:
 Mem-ref: Calculate Address
 Arith-log: Perform Operation

4) Memory:
 Load: Read Data from Memory
 Store: Write Data to Memory

5) Write Back: Write Data to Register

CS 61C L30 Introduction to Pipelined Execution (13) Garcia, Fall 2004 © UCB

Pipelined Execution Representation

•Every instruction must take same number
of steps, also called pipeline “stages”, so
some will go idle sometimes

IFtch Dcd Exec Mem WB
IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB
IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB
IFtch Dcd Exec Mem WB

Time

CS 61C L30 Introduction to Pipelined Execution (14) Garcia, Fall 2004 © UCB

Review: Datapath for MIPS

•Use datapath figure to represent pipeline
IFtch Dcd Exec Mem WB

A
LU I$ Reg D$ Reg

PC

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

Da
ta

m
em

or
y

imm

1. Instruction
Fetch

2. Decode/
 Register Read

3. Execute 4. Memory5. Write
Back

CS 61C L30 Introduction to Pipelined Execution (15) Garcia, Fall 2004 © UCB

Graphical Pipeline Representation

I
n
s
t
r.

O
r
d
e
r

Load

Add

Store

Sub

Or

 I$

Time (clock cycles)

 I$

A
LU

Reg

Reg

 I$

 D$

A
LU

A
LU

Reg

 D$

Reg

 I$

 D$

Reg
A

LU

Reg Reg

Reg

 D$

Reg

 D$

A
LU

(In Reg, right half highlight read, left half write)

Reg

 I$

CS 61C L30 Introduction to Pipelined Execution (16) Garcia, Fall 2004 © UCB

Example
•Suppose 2 ns for memory access, 2 ns
for ALU operation, and 1 ns for register
file read or write; compute instr rate
•Nonpipelined Execution:

• lw : IF + Read Reg + ALU + Memory + Write
Reg = 2 + 1 + 2 + 2 + 1 = 8 ns

• add: IF + Read Reg + ALU + Write Reg
= 2 + 1 + 2 + 1 = 6 ns

•Pipelined Execution:
• Max(IF,Read Reg,ALU,Memory,Write Reg)
= 2 ns

CS 61C L30 Introduction to Pipelined Execution (17) Garcia, Fall 2004 © UCB

Pipeline Hazard: Matching socks in later load

A depends on D; stall since folder tied up

T
a
s
k

O
r
d
e
r

B
C
D

A

E

F

bubble

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

CS 61C L30 Introduction to Pipelined Execution (18) Garcia, Fall 2004 © UCB

Administrivia

•Final Exam will be in 230 Hearst Gym
• Tue, 2004-12-14, 12:30–3:30pm

•Thanks to Andrew for filling in on Fri!
•Cal still ranked in the top 5

• Survived a scare on Sat
• We’re the top candidate for the Rose Bowl

CS 61C L30 Introduction to Pipelined Execution (19) Garcia, Fall 2004 © UCB

Problems for Computers

•Limits to pipelining: Hazards prevent
next instruction from executing during
its designated clock cycle

• Structural hazards: HW cannot support
this combination of instructions (single
person to fold and put clothes away)

• Control hazards: Pipelining of branches
& other instructions stall the pipeline
until the hazard; “bubbles” in the pipeline

• Data hazards: Instruction depends on
result of prior instruction still in the
pipeline (missing sock)

CS 61C L30 Introduction to Pipelined Execution (20) Garcia, Fall 2004 © UCB

Structural Hazard #1: Single Memory (1/2)

Read same memory twice in same clock cycle

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg

A
LU I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS 61C L30 Introduction to Pipelined Execution (21) Garcia, Fall 2004 © UCB

Structural Hazard #1: Single Memory (2/2)

•Solution:
• infeasible and inefficient to create
second memory

• (We’ll learn about this more next week)
• so simulate this by having two Level 1
Caches (a temporary smaller [of usually
most recently used] copy of memory)

• have both an L1 Instruction Cache and
an L1 Data Cache

• need more complex hardware to control
when both caches miss

CS 61C L30 Introduction to Pipelined Execution (22) Garcia, Fall 2004 © UCB

Structural Hazard #2: Registers (1/2)

Can’t read and write to registers simultaneously

 I$

sw

Instr 1

Instr 2

Instr 3

Instr 4
A

LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg

A
LU I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS 61C L30 Introduction to Pipelined Execution (23) Garcia, Fall 2004 © UCB

Structural Hazard #2: Registers (2/2)

•Fact: Register access is VERY fast:
takes less than half the time of ALU
stage
•Solution: introduce convention

• always Write to Registers during first
half of each clock cycle

• always Read from Registers during
second half of each clock cycle

• Result: can perform Read and Write
during same clock cycle

CS 61C L30 Introduction to Pipelined Execution (24) Garcia, Fall 2004 © UCB

Peer Instruction

A. Thanks to pipelining, I have reduced the time it
took me to wash my shirt.

B. Longer pipelines are always a win (since less
work per stage & a faster clock).

C. We can rely on compilers to help us avoid data
hazards by reordering instrs.

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS 61C L30 Introduction to Pipelined Execution (25) Garcia, Fall 2004 © UCB

Peer Instruction Answer

A. Thanks to pipelining, I have reduced the time it
took me to wash my shirt.

B. Longer pipelines are always a win (since less
work per stage & a faster clock).

C. We can rely on compilers to help us avoid data
hazards by reordering instrs.

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

F A L S E
F A L S E

A. Throughput better, not execution time
B. “…longer pipelines do usually mean faster

clock, but branches cause problems!

C. “they happen too often & delay too long.”
Forwarding! (e.g, Mem ⇒ ALU)

F A L S E

CS 61C L30 Introduction to Pipelined Execution (26) Garcia, Fall 2004 © UCB

Things to Remember
•Optimal Pipeline

• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each clock
cycle.

• On average, execute far more quickly.

•What makes this work?
• Similarities between instructions allow us
to use same stages for all instructions
(generally).

• Each stage takes about the same amount
of time as all others: little wasted time.

