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Control Hazard: Branching (2/7)

*We put branch decision-making
hardware in ALU stage

« therefore two more instructions after the
branch will always be fetched, whether
or not the branch is taken

Desired functionality of a branch

- if we do not take the branch, don’t waste
any time and continue executing
normally

« if we take the branch, don’t execute any
instructions after the branch, just go to
the desired label
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Control Hazard: Branching (4/7)

< Optimization #1:

* move asynchronous comparator up to
Stage 2

+ as soon as instruction is decoded
(Opcode identifies is as a branch),
immediately make a decision and set the
value of the PC (if necessary)

+ Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed

+ Side Note: This means that branches are
g idle in Stages 3, 4 and 5.
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Control Hazard: Branching (1/7)
Time (clock cycles)
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Control Hazard: Branching (3/7)

« Initial Solution: Stall until decision is
made

+insert “no-op” instructions: those that
accomplish nothing, just take time

» Drawback: branches take 3 clock cycles
each (assuming comparator is put in
ALU stage)
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Control Hazard: Branching (5/7)

Insert a single no-op (bubble)

ST+~ 5 -

*Impact: 2 clock cycles per branch
instruction = slow
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Control Hazard: Branching (6/7)

< Optimization #2: Redefine branches

+ Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident

» New definition: whether or not we take
the branch, the single instruction
immediately following the branch gets
executed (called the branch-delay slot)

*The term “Delayed Branch” means
we always execute inst after branch
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Example: Nondelayed vs. Delayed Branch

Nondelayed Branch Delayed Branch

or $8, $9 ,$10 add $1 ,%2,%3
add $1 ,$2,8$3 sub $4, $5,5%6
sub $4, $5,%6 beq $1, $4, Exit

beq $1, $4, Exit or $8, $9 ,810

xor $10, $1,$11 xor $10, $1,$11

A A
xit: Exit:
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Data Hazards (2/2)

Dependencies backwards in time are hazards
Time (clock cycles)
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IF_: ID/RI
3 |add sto.st1.stz] v |
r.

sub $t4,5t0,$t3

E

and $t5,5t0,$t6

or $t7,5t0,$t8

| xor $t9,5t0,$t10

-0oa=0

Control Hazard: Branching (7/7)

*Notes on Branch-Delay Slot

» Worst-Case Scenario: can always put a
no-op in the branch-delay slot

- Better Case: can find an instruction
preceding the branch which can be
placed in the branch-delay slot without
affecting flow of the program

- re-ordering instructions is a common
method of speeding up programs
- compiler must be very smart in order to
find instructions to do this
usually can find such an instruction at least
50% of the time
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g - Jumps also have a delay slot...
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Data Hazards (1/2)

* Consider the following sequence of
instructions

add $t0, $tl1, $t2
sub $t4, $t0 ,$t3
and $t5, $t0 ,$t6
or $t7, $t0 ,$t8
xor $t9, S$t0 ,$tlo0
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Data Hazard Solution: Forwarding
* Forward result from one stage to another

IF_IDIRF

add $10,5t1,$t2[ 15 [{Res]

sub $t4,50,$t3
and $t5,5t0,$t6
or $t7,5t0,$t8

xor $t9,5t0,$t10

g “or” hazard solved by register hardware
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Data Hazard: Loads (1/4)

* Dependencies backwards in time are
hazards

Iw $t0,0($t1)
sub $t3,5t0,$t2

+ Can’t solve with forwarding
+ Must stall instruction dependent on
load, then forward (more hardware)
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Data Hazard: Loads (3/4)

«Instruction slot after a load is called
“load delay slot”

« If that instruction uses the result of the
load, then the hardware interlock will
stall it for one cycle.

«If the compiler puts an unrelated
instruction in that slot, then no stall

* Letting the hardware stall the
instruction in the delay slot is
equivalent to Puttlng a nop in the slot
(except the latter uses more code space)
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Historical Trivia

*First MIPS design did not interlock and
stall on load-use data hazard

* Real reason for name behind MIPS:
Microprocessor without
Interlocked
Pipeline
Stages

* Word Play on acronym for
Millions of Instructions Per Second,
also called MIPS
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Data Hazard: Loads (2/4)

+ Hardware must stall pipeline
+ Called “interlock” .

IF

Iw $t0, 0($t1) ] E
sub $t3,5t0,$t2
and $t5,5t0,$t4

or $t7,5t0,$t6
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Data Hazard: Loads (4/4)
« Stall is equivalent to nop

($t1)

nop

sub $t3,5t0,$t2
and $t5,5t0,$t4

b

or $t7,5t0,$t6
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Administrivia

*No lab this week (wed, thu or fri)
* Due to Veterans Day holiday on Thursday.

*The lab is posted as a take-home lab;
show TA your results in the following lab.

*Grade freezing update : through HW4

* You have until next Wed to request
regrades on HW3,HW4 & P1

*Back to 61C...Advanced Pipelining!
* “Qut-of-order” Execution
* “Superscalar” Execution
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Review Pipeline Hazard: Stall is dependency
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Ardepends on D; stall since folder tied up
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Superscalar Laundry: Parallel per stage

6PM 7 8 9 10 11 12 1 2AM

) |
3030 30 30 30 Time

B35 A (light clothing)
o8 A (darkclothing)
a9’ A (very dirty clothing)

B EII & (light clothing)
B * & (dark clothing)

G 05 & (verydirty clothing)

More resources, HW to match mix of
g parallel tasks?
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x~0n 0 -

=0 Q=0

Peer Instruction

Assume 1 instr/clock, delayed branch, 5 stage
I:)I peline, forwardlngl, interlock on unresolve
ad hazards (after 103 loops, so pipeline full)

Loop: 1w $t0, 0($sl)
addu $tO0, $t0 $52
sw $t0, ($s1
addiu $sl $sl -4
bne $s1, $zero, Loop
nop

\omqmubwww‘

o

Out-of-Order Laundry: Don’t Wait

6PM 7 8 9 10 11 12 1 2AM

=== || '
3030 30 30 3030 30 Time

x~0n 0 -

Q ~ 0O

A tepends on D; rest continue; need
more resources to allow out-of-order

*How many pipeline stages, (clock cycles) per
' loop iteration to execute this code? Sreves
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Superscalar Laundry: Mismatch Mix
6PM 7 8 9 10 11 12 1 2AM

T ;)3 30 30‘30 30’30’ Time
a 55: ﬁ (light clothing)
k — Y B

&
°l® @3 (light clothing)
@ @8 4 (darkclothing)
o @A |
"o .@ (light clothing)

2 ,Task mix underutilizes extra resources
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“And in Conclusion..”

*Pipeline challenge is hazards
» Forwarding helps w/many data hazards
 Delayed branch helps with control hazard in
5 stage pipeline
*More aggressive performance:
+ Superscalar
+ Out-of-order execution
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