
CS61C L31 Pipelined Execution, part II (1) Garcia, Fall 2004 © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture 31 –
 Pipelined Execution, part II

2004-11-10

The Incredibles!⇒

Election Data is
now available…
Purple America!

www.princeton.edu/~rvdb/JAVA/election2004/
www.usatoday.com/news/politicselections/vote2004/countymap.htm

CS61C L31 Pipelined Execution, part II (4) Garcia, Fall 2004 © UCB

Control Hazard: Branching (1/7)

Where do we do the compare for the branch?

 I$

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg

A
LU I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L31 Pipelined Execution, part II (5) Garcia, Fall 2004 © UCB

Control Hazard: Branching (2/7)
•We put branch decision-making
hardware in ALU stage
• therefore two more instructions after the
branch will always be fetched, whether
or not the branch is taken

•Desired functionality of a branch
• if we do not take the branch, don’t waste
any time and continue executing
normally
• if we take the branch, don’t execute any
instructions after the branch, just go to
the desired label

CS61C L31 Pipelined Execution, part II (6) Garcia, Fall 2004 © UCB

Control Hazard: Branching (3/7)

• Initial Solution: Stall until decision is
made
• insert “no-op” instructions: those that
accomplish nothing, just take time
•Drawback: branches take 3 clock cycles
each (assuming comparator is put in
ALU stage)

CS61C L31 Pipelined Execution, part II (7) Garcia, Fall 2004 © UCB

Control Hazard: Branching (4/7)
•Optimization #1:
•move asynchronous comparator up to
Stage 2
• as soon as instruction is decoded
(Opcode identifies is as a branch),
immediately make a decision and set the
value of the PC (if necessary)
•Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed
•Side Note: This means that branches are
idle in Stages 3, 4 and 5.

CS61C L31 Pipelined Execution, part II (8) Garcia, Fall 2004 © UCB

• Insert a single no-op (bubble)

Control Hazard: Branching (5/7)

add

beq

lw

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg I$

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

• Impact: 2 clock cycles per branch
instruction ⇒ slow

CS61C L31 Pipelined Execution, part II (9) Garcia, Fall 2004 © UCB

Control Hazard: Branching (6/7)

•Optimization #2: Redefine branches
•Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident
•New definition: whether or not we take
the branch, the single instruction
immediately following the branch gets
executed (called the branch-delay slot)

•The term “Delayed Branch” means
we always execute inst after branch

CS61C L31 Pipelined Execution, part II (10) Garcia, Fall 2004 © UCB

Control Hazard: Branching (7/7)
•Notes on Branch-Delay Slot
•Worst-Case Scenario: can always put a
no-op in the branch-delay slot
•Better Case: can find an instruction
preceding the branch which can be
placed in the branch-delay slot without
affecting flow of the program
- re-ordering instructions is a common

method of speeding up programs
- compiler must be very smart in order to

find instructions to do this
- usually can find such an instruction at least

50% of the time
- Jumps also have a delay slot…

CS61C L31 Pipelined Execution, part II (11) Garcia, Fall 2004 © UCB

Example: Nondelayed vs. Delayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch
add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:

CS61C L31 Pipelined Execution, part II (12) Garcia, Fall 2004 © UCB

Data Hazards (1/2)

add $t0, $t1, $t2

sub $t4, $t0 ,$t3

and $t5, $t0 ,$t6

or $t7, $t0 ,$t8

xor $t9, $t0 ,$t10

•Consider the following sequence of
instructions

CS61C L31 Pipelined Execution, part II (13) Garcia, Fall 2004 © UCB

 Dependencies backwards in time are hazards
Data Hazards (2/2)

sub $t4,$t0,$t3

A
LUI$ Reg D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
LUReg D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L31 Pipelined Execution, part II (14) Garcia, Fall 2004 © UCB

• Forward result from one stage to another
Data Hazard Solution: Forwarding

sub $t4,$t0,$t3

A
LUI$ Reg D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
LUReg D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

 “or” hazard solved by register hardware

CS61C L31 Pipelined Execution, part II (15) Garcia, Fall 2004 © UCB

• Dependencies backwards in time are
hazards

Data Hazard: Loads (1/4)

sub $t3,$t0,$t2

A
LUI$ Reg D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

• Can’t solve with forwarding
• Must stall instruction dependent on
load, then forward (more hardware)

CS61C L31 Pipelined Execution, part II (16) Garcia, Fall 2004 © UCB

• Hardware must stall pipeline
• Called “interlock”

Data Hazard: Loads (2/4)

sub $t3,$t0,$t2

A
LUI$ Reg D$ Regbub

ble

and $t5,$t0,$t4

A
LUI$ Reg D$ Regbub

ble

or $t7,$t0,$t6 I$

A
LUReg D$bub

ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

CS61C L31 Pipelined Execution, part II (17) Garcia, Fall 2004 © UCB

Data Hazard: Loads (3/4)

• Instruction slot after a load is called
“load delay slot”
• If that instruction uses the result of the
load, then the hardware interlock will
stall it for one cycle.
• If the compiler puts an unrelated
instruction in that slot, then no stall
•Letting the hardware stall the
instruction in the delay slot is
equivalent to putting a nop in the slot
(except the latter uses more code space)

CS61C L31 Pipelined Execution, part II (18) Garcia, Fall 2004 © UCB

Data Hazard: Loads (4/4)
•Stall is equivalent to nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or $t7,$t0,$t6 I$

A
LUReg D$

lw $t0, 0($t1) A
LUI$ Reg D$ Reg

bub
ble

bub
ble

bub
ble

bub
ble

bub
ble

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

nop

CS61C L31 Pipelined Execution, part II (19) Garcia, Fall 2004 © UCB

 Historical Trivia

•First MIPS design did not interlock and
stall on load-use data hazard
•Real reason for name behind MIPS:
Microprocessor without
Interlocked
Pipeline
Stages
•Word Play on acronym for
Millions of Instructions Per Second,
also called MIPS

CS61C L31 Pipelined Execution, part II (20) Garcia, Fall 2004 © UCB

Administrivia

•No lab this week (wed, thu or fri)
•Due to Veterans Day holiday on Thursday.
• The lab is posted as a take-home lab;
show TA your results in the following lab.

•Grade freezing update : through HW4
•You have until next Wed to request
regrades on HW3,HW4 & P1

•Back to 61C…Advanced Pipelining!
• “Out-of-order” Execution
• “Superscalar” Execution

CS61C L31 Pipelined Execution, part II (21) Garcia, Fall 2004 © UCB

Review Pipeline Hazard: Stall is dependency

A depends on D; stall since folder tied up

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B
C
D

A

E

F

bubble
303030 3030 30 30

CS61C L31 Pipelined Execution, part II (22) Garcia, Fall 2004 © UCB

Out-of-Order Laundry: Don’t Wait

A depends on D; rest continue; need
more resources to allow out-of-order

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B
C
D

A
303030 3030 30 30

E

F

bubble

CS61C L31 Pipelined Execution, part II (23) Garcia, Fall 2004 © UCB

Superscalar Laundry: Parallel per stage

More resources, HW to match mix of
parallel tasks?

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B
C
D

A

E

F

 (light clothing)
 (dark clothing)
 (very dirty clothing)

 (light clothing)
 (dark clothing)
 (very dirty clothing)

303030 3030

CS61C L31 Pipelined Execution, part II (24) Garcia, Fall 2004 © UCB

Superscalar Laundry: Mismatch Mix

Task mix underutilizes extra resources

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30
 (light clothing)

 (light clothing)
 (dark clothing)

 (light clothing)

A

B

D

C

CS61C L31 Pipelined Execution, part II (25) Garcia, Fall 2004 © UCB

Peer Instruction

Assume 1 instr/clock, delayed branch, 5 stage
pipeline, forwarding, interlock on unresolved
load hazards (after 103 loops, so pipeline full)
Loop: lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

•How many pipeline stages (clock cycles) per
loop iteration to execute this code?

1
2
3
4
5
6
7
8
9
10

CS61C L31 Pipelined Execution, part II (27) Garcia, Fall 2004 © UCB

“And in Conclusion..”
•Pipeline challenge is hazards
• Forwarding helps w/many data hazards
•Delayed branch helps with control hazard in
5 stage pipeline

•More aggressive performance:
•Superscalar
•Out-of-order execution

