CS61C : Machine Structures

Lecture 31 -
Pipelined Execution, part Il

2004-11-10
Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Election Data is ¥
now available...
Purple America!
- . " >
www.princeton.edu/~rvdb/JAVA/election2004/ I,w

www . usatoday . com/news/politicselections/vote2004/countymap. htm
(CS61C L31 Pipelined Execution, part II (1)

Garca, Fall 2004 © UCB

Control Hazard: Branching (2/7)

*We put branch decision-making
hardware in ALU stage

« therefore two more instructions after the
branch will always be fetched, whether
or not the branch is taken

Desired functionality of a branch

- if we do not take the branch, don’t waste
any time and continue executing
normally

« if we take the branch, don’t execute any
instructions after the branch, just go to
the desired label

CSB1C L31 Pipelined Execution, part If (5) Garcia, Fall 2004 © UCB

Control Hazard: Branching (4/7)

< Optimization #1:

* move asynchronous comparator up to
Stage 2

+ as soon as instruction is decoded
(Opcode identifies is as a branch),
immediately make a decision and set the
value of the PC (if necessary)

+ Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed

+ Side Note: This means that branches are
g idle in Stages 3, 4 and 5.

CSB1C L31 Pipelined Execution, part Ii (7)

Garcia, Fall 2004 © UCB

Control Hazard: Branching (1/7)
Time (clock cycles)

2 beq

t |instr1

r. =

Instr 2 ¢

? Instr 3 |28 Jr{Ree

dyv ?, Reg

< Instr 4 - (>
zr Where do we do thé coﬁ1pare for the branch?

Control Hazard: Branching (3/7)

« Initial Solution: Stall until decision is
made

+insert “no-op” instructions: those that
accomplish nothing, just take time

» Drawback: branches take 3 clock cycles
each (assuming comparator is put in
ALU stage)

g CSB1C L3 Pipelined Execution, part 11 (6)

Garca, Fall 2004 © UCB

Control Hazard: Branching (5/7)

Insert a single no-op (bubble)

ST+~ 5 -

*Impact: 2 clock cycles per branch
instruction = slow

g CSB1C L3 Pipelined Execution, part 11 (8)

o
r
d
e
r

Garca, Fall 2004 © UCB

Control Hazard: Branching (6/7)

< Optimization #2: Redefine branches

+ Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident

» New definition: whether or not we take
the branch, the single instruction
immediately following the branch gets
executed (called the branch-delay slot)

*The term “Delayed Branch” means
we always execute inst after branch

g CSB1C L3 Pipelined Execution, part 11 (9)

Garca, Fall 2004 © UCB

Example: Nondelayed vs. Delayed Branch

Nondelayed Branch Delayed Branch

or $8, $9 ,$10 add $1 ,%2,%3
add $1 ,$2,8$3 sub $4, $5,5%6
sub $4, $5,%6 beq $1, $4, Exit

beq $1, $4, Exit or $8, $9 ,810

xor $10, $1,$11 xor $10, $1,$11

A A
xit: Exit:

g CSB1C L1 Pipelined Execution, part I (1)

=

Garcia, Fall 2004 © UCB

Data Hazards (2/2)

Dependencies backwards in time are hazards
Time (clock cycles)

1
n

IF_: ID/RI
3 |add sto.st1.stz] v |
r.

sub $t4,5t0,$t3

E

and $t5,5t0,$t6

or $t7,5t0,$t8

| xor $t9,5t0,$t10

-0oa=0

Control Hazard: Branching (7/7)

*Notes on Branch-Delay Slot

» Worst-Case Scenario: can always put a
no-op in the branch-delay slot

- Better Case: can find an instruction
preceding the branch which can be
placed in the branch-delay slot without
affecting flow of the program

- re-ordering instructions is a common
method of speeding up programs
- compiler must be very smart in order to
find instructions to do this
usually can find such an instruction at least
50% of the time

g CSB1C L1 Pipelined Execution, part Il (13

Garcia, Fall 2004 © UCB

g - Jumps also have a delay slot...

CS61C L31 Pipelined Execution, part II (10) Garca, Fall 2004 © UCB

Data Hazards (1/2)

* Consider the following sequence of
instructions

add $t0, $tl1, $t2
sub $t4, $t0 ,$t3
and $t5, $t0 ,$t6
or $t7, $t0 ,$t8
xor $t9, S$t0 ,$tlo0

g CSB1C L1 Pipelined Execution, part I (12)

Garca, Fall 2004 © UCB

Data Hazard Solution: Forwarding
* Forward result from one stage to another

IF_IDIRF

add $10,5t1,$t2[15 [{Res]

sub $t4,50,$t3
and $t5,5t0,$t6
or $t7,5t0,$t8

xor $t9,5t0,$t10

g “or” hazard solved by register hardware

CSB1C L31 Pipelined Execution, part II (14) Garca, Fall 2004 © UCB

Data Hazard: Loads (1/4)

* Dependencies backwards in time are
hazards

Iw $t0,0($t1)
sub $t3,5t0,$t2

+ Can’t solve with forwarding
+ Must stall instruction dependent on
load, then forward (more hardware)

CSB1C L31 Pipelined Execution, part Ii (15) Garca, Fall 2004 © UCB

Data Hazard: Loads (3/4)

«Instruction slot after a load is called
“load delay slot”

« If that instruction uses the result of the
load, then the hardware interlock will
stall it for one cycle.

«If the compiler puts an unrelated
instruction in that slot, then no stall

* Letting the hardware stall the
instruction in the delay slot is
equivalent to Puttlng a nop in the slot
(except the latter uses more code space)

g CSB1C L31 Pipelined Execution part 1l (17)

Garcia, Fall 2004 © UCB

Historical Trivia

*First MIPS design did not interlock and
stall on load-use data hazard

* Real reason for name behind MIPS:
Microprocessor without
Interlocked
Pipeline
Stages

* Word Play on acronym for
Millions of Instructions Per Second,
also called MIPS

g CSB1C L31 Pipelined Execution part Il (16)

Data Hazard: Loads (2/4)

+ Hardware must stall pipeline
+ Called “interlock” .

IF

Iw $t0, 0($t1)] E
sub $t3,5t0,$t2
and $t5,5t0,$t4

or $t7,5t0,$t6

Garca, Fall 2004 © UCB

Data Hazard: Loads (4/4)
« Stall is equivalent to nop

($t1)

nop

sub $t3,5t0,$t2
and $t5,5t0,$t4

b

or $t7,5t0,$t6

Garca, Fall 2004 © UCB

g CSB1C L31 Pipelined Execution part Il (19)

Garcia, Fall 2004 © UCB

g CSB1C L3t Pipelined Execution part Il (18)

Administrivia

*No lab this week (wed, thu or fri)
* Due to Veterans Day holiday on Thursday.

*The lab is posted as a take-home lab;
show TA your results in the following lab.

*Grade freezing update : through HW4

* You have until next Wed to request
regrades on HW3,HW4 & P1

*Back to 61C...Advanced Pipelining!
* “Qut-of-order” Execution
* “Superscalar” Execution

g CS61C L31 Pipelined Execution, part Il 20) Garcia, Fall 2004 © UCB

Review Pipeline Hazard: Stall is dependency

GIPM 7 8 9 10 11 12 1 2AM

| Time
T 30303030303030
a| & 5 “owowe> i&A
(& B9 :

& @3 YA
°z @9 LA
i A
NP SRR

Ardepends on D; stall since folder tied up

CSB1C L31 Pipelined Execution, part II (21) Garca, Fall 2004 © UCB

Superscalar Laundry: Parallel per stage

6PM 7 8 9 10 11 12 1 2AM

) |
3030 30 30 30 Time

B35 A (light clothing)
o8 A (darkclothing)
a9’ A (very dirty clothing)

B EII & (light clothing)
B * & (dark clothing)

G 05 & (verydirty clothing)

More resources, HW to match mix of
g parallel tasks?
CS61C L31 Pipelined Execution, part Il (23) Garcia, Fall 2004 © UCB

x~0n 0 -

=0 Q=0

Peer Instruction

Assume 1 instr/clock, delayed branch, 5 stage
I:)I peline, forwardlngl, interlock on unresolve
ad hazards (after 103 loops, so pipeline full)

Loop: 1w $t0, 0($sl)
addu $tO0, $t0 $52
sw $t0, ($s1
addiu $sl $sl -4
bne $s1, $zero, Loop
nop

\omqmubwww‘

o

Out-of-Order Laundry: Don’t Wait

6PM 7 8 9 10 11 12 1 2AM

=== || '
3030 30 30 3030 30 Time

x~0n 0 -

Q ~ 0O

A tepends on D; rest continue; need
more resources to allow out-of-order

*How many pipeline stages, (clock cycles) per
' loop iteration to execute this code? Sreves

CSB1C L31 Pipelined Execution, part II (22) Garca, Fall 2004 © UCB

Superscalar Laundry: Mismatch Mix
6PM 7 8 9 10 11 12 1 2AM

T ;)3 30 30‘30 30’30’ Time
a 55: ﬁ (light clothing)
k — Y B

&
°l® @3 (light clothing)
@ @8 4 (darkclothing)
o @A |
"o .@ (light clothing)

2 ,Task mix underutilizes extra resources

CSB1C L31 Pipelined Execution, part II (24) Garca, Fall 2004 © UCB

“And in Conclusion..”

*Pipeline challenge is hazards
» Forwarding helps w/many data hazards
 Delayed branch helps with control hazard in
5 stage pipeline
*More aggressive performance:
+ Superscalar
+ Out-of-order execution

g CS61C L31 Pipelined Execution, part Il 27) Garcia, Fall 2004 © UCB

