CS61C : Machine Structures

Lecture 32
Caches |

2004-11-12
Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Is this the beginning of the X 4 h
end for our beloved... msn. m
Web News Images

[. D
() fg +Search Builder Settings Help Espaiol

gu” http://beta.search.msn.com/ ... cuamoucs

Big Ideas so far

« 15 weeks to learn big ideas in CS&E
* Principle of abstraction, used to build systems
as layers
+ Pliable Data: a program determines what it is
- Stored program concept: instructions just data

» Compilation v. interpretation to move down
layers of system

+ Greater performance by exploiting parallelism
(pipeline)

+ Principle of Locality, exploited via a memory
hierarchy (cache)

g CS61C L32 Caches 1 (3)

Garcia, Fall 2004 © UCB

The Big Picture

Keyboard
Processolf Memory | hevicesf Mouse

active) |(passive) m - =
(where + Disk, |

Sontrel [tvogrars AN
data live

t?,t;eva" when N
) running) | ! Display,
| E— | Printer

Garcia, Fall 2004 © UCB

g CS61C L32 Caches | (5)

Review : Pipelining
+Pipeline challenge is hazards

» Forwarding helps w/many data hazards

 Delayed branch helps with control hazard in
our 5 stage pipeline

+ Data hazards w/Loads => Load Delay Slot
- Interlock = “smart” CPU has HW to detect if
conflict with inst following load, if so it stalls
*More aggressive performance:
« Superscalar (parallelism)
+ Out-of-order execution

g CS61C L32 Caches 1 2)

Garca, Fall 2004 © UCB

Where are we now in 61C?

 Architecture! (aka “Systems”™)

» Caches

* Virtual Memory
-1/0

* Networks

* Performance

g CS61C L32 Caches 1 (4)

Garca, Fall 2004 © UCB

Memory Hierarchy (1/3)

*Processor

- executes instructions on order of
nanoseconds to picoseconds

+ holds a small amount of code and data
in registers
*Memory
» More capacity than registers, still limited
» Access time ~50-100 ns

*Disk
* HUGE capacity (virtually limitless)
g * VERY slow: runs ~milliseconds

CS61C L32 Caches | (6)

Garca, Fall 2004 © UCB

Memory Hierarchy (2/3)

Processor
i Increasing
Higher Distance
Levels in If:;'om Proc.,
memory Level 2 eg'raeeaesdlng

hierarchV Level 3 \
Lower/ " AN
/ Level n \

< >

Size of memory at each level
As we move to deeper levels the latency

g goes up and price per bit goes down.

<

Q: Can $/bit go up as move deeper?

CS61C L32 Caches | (7) Garca, Fall 2004 © UCB

Memory Caching

*We’ve discussed three levels in the
hierarchy: processor, memory, disk

*Mismatch between processor and
memory speeds leads us to add a
new level: a memory cache

«Implemented with SRAM technolo&x:
faster but more expensive than DRAM
memory.

+ “S” = Static, no need to refresh, ~60ns
+“D” = Dynamic, need to refresh, ~10ns

- arstechnica.com/paedia/r/ram_guide/ram_guide.partl-1.html

@ CS61C L32 Caches | (9) Garcia, Fall 2004 © UCB

Memory Hierarchy Analogy: Library (2/2)

*Open books on table are cache
» smaller capacity: can have very few open

books fit on table; again, when table fills
up, you must close a book

» much, much faster to retrieve data

«lllusion created: whole library open on
the tabletop
* Keep as many recently used books open
on table as possible since likely to use
again
+ Also keep as many books on table as
@ possible, since faster than going to library

CSB1C La2 Caches | (11) Garcia, Fall 2004 © UCB

Memory Hierarchy (3/3)

«If level closer to Processor, it must be:
* smaller
- faster
+ subset of lower levels (contains most
recently used data)

eLowest Level (usually disk) contains
all available data

* Other levels?

g CS61C L32 Caches | ®) Garcia, Fall 2004 © UCB

Memory Hierarchy Analogy: Library (1/2)

*You’re writing a term paper
(Processor) at a table in Doe
*Doe Library is equivalent to disk
- essentially limitless capacity
« very slow to retrieve a book

eTable is memory

» smaller capacity: means you must return
book when table fills up

« easier and faster to find a book there
once you’ve already retrieved it

@ CSB1C La2 Caches | (10) Garca, Fall 2004 © UCB

Memory Hierarchy Basis
*Disk contains everything.

*When Processor needs something,
bring it into to all higher levels of
memory.

«Cache contains copies of data in
memory that are being used.

*Memory contains copies of data on
disk that are being used.

¢ Entire idea is based on Temporal
Locality: if we use it now, we’ll want
to use it again soon (a Big Idea)

@ CSB1C La2 Caches | (12) Garca, Fall 2004 © UCB

Cache Design

*How do we organize cache?

*«Where does each memory address
map to?

(Remember that cache is subset of
memory, so multiple memory addresses
map to the same cache location.)

* How do we know which elements are
in cache?

*How do we quickly locate them?

g CS61C L32 Caches 1 (13)

Garca, Fall 2004 © UCB

Direct-Mapped Cache (2/2)

Memory Cache 4 Byte Direct
Address Memory Index Mapped Cache

« Cache Location 0 can be
occupied by data from:

* Memory location 0, 4, 8, ...

* 4 blocks => any memory
location that is multiple of 4

OV > \O 0 T\ UL s 0 R et D

@ CSB1C L32 Caches | (15)

Garcia, Fall 2004 © UCB

Direct-Mapped Cache Terminology

« All fields are read as unsigned integers.

«Index: specifies the cache index (which
“row” of the cache we should look in)

« Offset: once we’ve found correct block,
specifies which byte within the block
we want

-T%-g: the remaining bits after offset and

index are determined; these are used
to distinguish between all the memory
addresses that map to the same
location

@ CSB1C La2 Caches | (17)

Garcia, Fall 2004 © UCB

Direct-Mapped Cache (1/2)

*In a direct-mapped cache, each
memory address is associated with
one possible block within the cache

* Therefore, we only need to look in a
single location in the cache for the data
if it exists in the cache

+ Block is the unit of transfer between
cache and memory

g CS61C L32 Caches | (14)

Garca, Fall 2004 © UCB

Issues with Direct-Mapped

* Since multiple memory addresses
map to same cache index, how do we
tell which one is in there?

«What if we have a block size > 1 byte?

¢ Answer: divide memory address into
three fields

tag index byte

to check to offset

if have select within
@ correct block block block

Garca, Fall 2004 © UCB

Caching Terminology

¢ When we try to read memory,
3 things can happen:

cache block is valid and contains
proper address, so read desired word

2. cache miss:

nothing in cache in appropriate block,
so fetch from memory

3. cache miss, block replacement:
wrong data is in cache at appropriate
block, so discard it and fetch desired
data from memory (cache always copy)

@ CSB1C La2 Caches | (18)

Garca, Fall 2004 © UCB

Direct-Mapped Cache Example (1/3)

*Suppose we have a 16KB of data in a
direct-mapped cache with 4 word blocks

*Determine the size of the tag, index and
offset fields if we’re using a 32-bit
architecture

« Offset

* need to specify correct byte within a block
+ block contains 4 words
=16 bytes
= 2% bytes
@ * need 4 bits to specify correct byte

CS61C L32 Caches | (19) Garca, Fall 2004 © UCB

Direct-Mapped Cache Example (3/3)
*Tag: use remaining bits as tag

« tag length = addr length — offset - index
=32-4-10 bits
= 18 bits

+ so tag is leftmost 18 bits of memory address

*Why not full 32 bit address as tag?
« All bytes within block need same address (4b)

* Index must be same for every address within
a block, so it’s redundant in tag check, thus
can leave off to save memory (here 10 bits)

Direct-Mapped Cache Example (2/3)
eIndex: (~index into an “array of blocks”)
* need to specify correct row in cache
- cache contains 16 KB = 214 bytes
- block contains 24 bytes (4 words)
- # blocks/cache

= bytes/cache
bytes/block

= 214 pytes/cache
24 bytes/block

= 2% blocks/cache
*need 10 bits to specify this many rows

@ CS61C L32 Caches | (20) Garca, Fall 2004 © UCB

Q CS61C L32 Caches | (21) Garcia, Fall 2004 © UCB

Peer Instruction

A. Mem hierarchies were invented before ABC
1950. (UNIVAC | wasn’t delivered ‘til 1951) : FFF

B. If you know your computer’s cache size, : FET

you can often make your code run faster. : g:g

spatial locality by keeping the most . TFT
recent data items closer to the processor. TR

And in conclusion...

*We would like to have the capacity of
disk at the speed of the processor:
unfortunately this is not feasible.

*So we create a memory hierarchy:

» each successively lower level contains
“most used” data from next higher level
« exploits temporal locality

» do the common case fast, worry less
about the exceptions
(design principle of MIPS)

¢ Locality of reference is a Big Idea

Q CS61C L32 Caches | (24) Garcia, Fall 2004 © UCB

1
2
3
. . 4
C. Memory hierarchies take advantage of 5. TEFF
6
7
8

74 e
CS61C L32 Caches | (22)

arcia, Fall 2004 © UCB

