
CS61C L32 Caches I (1) Garcia, Fall 2004 © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture 32
 Caches I

2004-11-12

The Incredibles!⇒

Is this the beginning of the
end for our beloved…

http://beta.search.msn.com/

?!

CS61C L32 Caches I (2) Garcia, Fall 2004 © UCB

Review : Pipelining
•Pipeline challenge is hazards

• Forwarding helps w/many data hazards
• Delayed branch helps with control hazard in
our 5 stage pipeline

• Data hazards w/Loads ⇒ Load Delay Slot
- Interlock ⇒ “smart” CPU has HW to detect if

conflict with inst following load, if so it stalls

•More aggressive performance:
• Superscalar (parallelism)
• Out-of-order execution

CS61C L32 Caches I (3) Garcia, Fall 2004 © UCB

Big Ideas so far

• 15 weeks to learn big ideas in CS&E
• Principle of abstraction, used to build systems

as layers
• Pliable Data: a program determines what it is
• Stored program concept: instructions just data
• Compilation v. interpretation to move down

layers of system
• Greater performance by exploiting parallelism

(pipeline)
• Principle of Locality, exploited via a memory

hierarchy (cache)
• Principles/Pitfalls of Performance Measurement

CS61C L32 Caches I (4) Garcia, Fall 2004 © UCB

Where are we now in 61C?

•Architecture! (aka “Systems”)
• CPU Organization
• Pipelining
• Caches
• Virtual Memory
• I / O
• Networks
• Performance

CS61C L32 Caches I (5) Garcia, Fall 2004 © UCB

The Big Picture

 Processor
 (active)

Computer

Control
(“brain”)
Datapath
(“brawn”)

Memory
(passive)
(where
programs,
data live
when
running)

Devices
Input

Output

Keyboard,
Mouse

Display,
Printer

Disk,
Network

CS61C L32 Caches I (6) Garcia, Fall 2004 © UCB

Memory Hierarchy (1/3)

•Processor
• executes instructions on order of
nanoseconds to picoseconds

• holds a small amount of code and data
in registers

•Memory
• More capacity than registers, still limited
• Access time ~50-100 ns

•Disk
• HUGE capacity (virtually limitless)
• VERY slow: runs ~milliseconds

CS61C L32 Caches I (7) Garcia, Fall 2004 © UCB

Memory Hierarchy (2/3)
Processor

Size of memory at each level

Increasing
Distance

from Proc.,
Decreasing

speed
Level 1
Level 2

Level n

Level 3
. . .

Higher

Lower

Levels in
memory

hierarchy

As we move to deeper levels the latency
goes up and price per bit goes down.

Q: Can $/bit go up as move deeper?
CS61C L32 Caches I (8) Garcia, Fall 2004 © UCB

Memory Hierarchy (3/3)

• If level closer to Processor, it must be:
• smaller
• faster
• subset of lower levels (contains most
recently used data)

•Lowest Level (usually disk) contains
all available data
•Other levels?

CS61C L32 Caches I (9) Garcia, Fall 2004 © UCB

Memory Caching

•We’ve discussed three levels in the
hierarchy: processor, memory, disk
•Mismatch between processor and
memory speeds leads us to add a
new level: a memory cache
• Implemented with SRAM technology:
faster but more expensive than DRAM
memory.

• “S” = Static, no need to refresh, ~60ns
• “D” = Dynamic, need to refresh, ~10ns
• arstechnica.com/paedia/r/ram_guide/ram_guide.part1-1.html

CS61C L32 Caches I (10) Garcia, Fall 2004 © UCB

Memory Hierarchy Analogy: Library (1/2)

•You’re writing a term paper
(Processor) at a table in Doe
•Doe Library is equivalent to disk

• essentially limitless capacity
• very slow to retrieve a book

•Table is memory
• smaller capacity: means you must return
book when table fills up

• easier and faster to find a book there
once you’ve already retrieved it

CS61C L32 Caches I (11) Garcia, Fall 2004 © UCB

Memory Hierarchy Analogy: Library (2/2)

•Open books on table are cache
• smaller capacity: can have very few open
books fit on table; again, when table fills
up, you must close a book

• much, much faster to retrieve data

• Illusion created: whole library open on
the tabletop

• Keep as many recently used books open
on table as possible since likely to use
again

• Also keep as many books on table as
possible, since faster than going to library

CS61C L32 Caches I (12) Garcia, Fall 2004 © UCB

Memory Hierarchy Basis
•Disk contains everything.
•When Processor needs something,
bring it into to all higher levels of
memory.
•Cache contains copies of data in
memory that are being used.
•Memory contains copies of data on
disk that are being used.
•Entire idea is based on Temporal
Locality: if we use it now, we’ll want
to use it again soon (a Big Idea)

CS61C L32 Caches I (13) Garcia, Fall 2004 © UCB

Cache Design

•How do we organize cache?
•Where does each memory address
map to?

(Remember that cache is subset of
memory, so multiple memory addresses
map to the same cache location.)

•How do we know which elements are
in cache?
•How do we quickly locate them?

CS61C L32 Caches I (14) Garcia, Fall 2004 © UCB

Direct-Mapped Cache (1/2)

• In a direct-mapped cache, each
memory address is associated with
one possible block within the cache

• Therefore, we only need to look in a
single location in the cache for the data
if it exists in the cache

• Block is the unit of transfer between
cache and memory

CS61C L32 Caches I (15) Garcia, Fall 2004 © UCB

Direct-Mapped Cache (2/2)

• Cache Location 0 can be
occupied by data from:
• Memory location 0, 4, 8, ...
• 4 blocks => any memory

location that is multiple of 4

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

CS61C L32 Caches I (16) Garcia, Fall 2004 © UCB

Issues with Direct-Mapped

•Since multiple memory addresses
map to same cache index, how do we
tell which one is in there?
•What if we have a block size > 1 byte?
•Answer: divide memory address into
three fields
ttttttttttttttttt iiiiiiiiii oooo

tag index byte
to check to offset
if have select within
correct block block block

CS61C L32 Caches I (17) Garcia, Fall 2004 © UCB

Direct-Mapped Cache Terminology
•All fields are read as unsigned integers.
• Index: specifies the cache index (which
“row” of the cache we should look in)
•Offset: once we’ve found correct block,
specifies which byte within the block
we want
•Tag: the remaining bits after offset and
index are determined; these are used
to distinguish between all the memory
addresses that map to the same
location

CS61C L32 Caches I (18) Garcia, Fall 2004 © UCB

Caching Terminology
• When we try to read memory,

3 things can happen:
1. cache hit:

cache block is valid and contains
proper address, so read desired word

2. cache miss:
nothing in cache in appropriate block,
so fetch from memory

3. cache miss, block replacement:
wrong data is in cache at appropriate
block, so discard it and fetch desired
data from memory (cache always copy)

CS61C L32 Caches I (19) Garcia, Fall 2004 © UCB

Direct-Mapped Cache Example (1/3)

•Suppose we have a 16KB of data in a
direct-mapped cache with 4 word blocks
•Determine the size of the tag, index and
offset fields if we’re using a 32-bit
architecture
•Offset

• need to specify correct byte within a block
• block contains 4 words

 = 16 bytes
 = 24 bytes

• need 4 bits to specify correct byte
CS61C L32 Caches I (20) Garcia, Fall 2004 © UCB

Direct-Mapped Cache Example (2/3)
• Index: (~index into an “array of blocks”)

• need to specify correct row in cache
• cache contains 16 KB = 214 bytes
• block contains 24 bytes (4 words)
• # blocks/cache

 = bytes/cache
bytes/block

 = 214 bytes/cache
 24 bytes/block

 = 210 blocks/cache
• need 10 bits to specify this many rows

CS61C L32 Caches I (21) Garcia, Fall 2004 © UCB

Direct-Mapped Cache Example (3/3)
•Tag: use remaining bits as tag

• tag length = addr length – offset - index
 = 32 - 4 - 10 bits

 = 18 bits
• so tag is leftmost 18 bits of memory address

•Why not full 32 bit address as tag?
• All bytes within block need same address (4b)
• Index must be same for every address within
a block, so it’s redundant in tag check, thus
can leave off to save memory (here 10 bits)

CS61C L32 Caches I (22) Garcia, Fall 2004 © UCB

Peer Instruction

A. Mem hierarchies were invented before
1950. (UNIVAC I wasn’t delivered ‘til 1951)

B. If you know your computer’s cache size,
you can often make your code run faster.

C. Memory hierarchies take advantage of
spatial locality by keeping the most
recent data items closer to the processor.

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L32 Caches I (24) Garcia, Fall 2004 © UCB

And in conclusion…
•We would like to have the capacity of
disk at the speed of the processor:
unfortunately this is not feasible.
•So we create a memory hierarchy:

• each successively lower level contains
“most used” data from next higher level

• exploits temporal locality
• do the common case fast, worry less
about the exceptions
(design principle of MIPS)

•Locality of reference is a Big Idea

