
CS 61C L35 Caches IV / VM I (1) Garcia, Fall 2004 © UCB

Andy Carle

inst.eecs.berkeley.edu/~cs61c-ta

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture 35
Caches IV / VM I

2004-11-19

Google strikes back
against recent encroachments into
the Search world with the launch of
two new services: Keyhole & Scholar.

CS 61C L35 Caches IV / VM I (2) Garcia, Fall 2004 © UCB

Review: Why We Use Caches
µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88 19

89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce “Moore’s Law”

• 1989 first Intel CPU with cache on chip

• 1998 Pentium III has two levels of cache on chip

CS 61C L35 Caches IV / VM I (3) Garcia, Fall 2004 © UCB

Review: Direct-Mapped Cache Example

• Recall this is how a
simple direct mapped
cache looked.

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

CS 61C L35 Caches IV / VM I (4) Garcia, Fall 2004 © UCB

Review: Associative Cache Example

• Here’s a simple 2 way set
associative cache.

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache
Index

0
0
1
1

CS 61C L35 Caches IV / VM I (5) Garcia, Fall 2004 © UCB

Block Replacement Policy (1/2)

• Direct-Mapped Cache: index completely
specifies position which position a
block can go in on a miss

• N-Way Set Assoc: index specifies a set,
but block can occupy any position
within the set on a miss

• Fully Associative: block can be written
into any position

• Question: if we have the choice, where
should we write an incoming block?

CS 61C L35 Caches IV / VM I (6) Garcia, Fall 2004 © UCB

Block Replacement Policy (2/2)

• If there are any locations with valid bit
off (empty), then usually write the new
block into the first one.

• If all possible locations already have a
valid block, we must pick a
replacement policy: rule by which we
determine which block gets “cached
out” on a miss.

CS 61C L35 Caches IV / VM I (7) Garcia, Fall 2004 © UCB

Block Replacement Policy: LRU

• LRU (Least Recently Used)
• Idea: cache out block which has been
accessed (read or write) least recently

• Pro: temporal locality ⇒ recent past use
implies likely future use: in fact, this is a
very effective policy

• Con: with 2-way set assoc, easy to keep
track (one LRU bit); with 4-way or
greater, requires complicated hardware
and much time to keep track of this

CS 61C L35 Caches IV / VM I (8) Garcia, Fall 2004 © UCB

Block Replacement Example
• We have a 2-way set associative cache
with a four word total capacity and one
word blocks. We perform the
following word accesses (ignore bytes
for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4
How many hits and how many misses
will there be for the LRU block
replacement policy?

CS 61C L35 Caches IV / VM I (9) Garcia, Fall 2004 © UCB

Block Replacement Example: LRU
• Addresses 0, 2, 0, 1, 4, 0, ... 0 lru

2

1 lru

loc 0 loc 1
set 0

set 1

0 2lruset 0

set 1

0: miss, bring into set 0 (loc 0)

2: miss, bring into set 0 (loc 1)

0: hit

1: miss, bring into set 1 (loc 0)

4: miss, bring into set 0 (loc 1, replace 2)

0: hit

0set 0

set 1

lrulru

0 2set 0

set 1

lru lru

set 0

set 1
0
1 lru

lru24lru

set 0

set 1
0 4
1 lru

lru lru

CS 61C L35 Caches IV / VM I (10) Garcia, Fall 2004 © UCB

Big Idea

• How to choose between associativity,
block size, replacement policy?

• Design against a performance model
• Minimize: Average Memory Access Time

= Hit Time
+ Miss Penalty x Miss Rate

• influenced by technology & program
behavior

• Note: Hit Time encompasses Hit Rate!!!

• Create the illusion of a memory that is
large, cheap, and fast - on average

CS 61C L35 Caches IV / VM I (11) Garcia, Fall 2004 © UCB

Example

• Assume
• Hit Time = 1 cycle
• Miss rate = 5%
• Miss penalty = 20 cycles
• Calculate AMAT…

• Avg mem access time
= 1 + 0.05 x 20
= 1 + 1 cycles
= 2 cycles

CS 61C L35 Caches IV / VM I (12) Garcia, Fall 2004 © UCB

Administrivia

• Do your reading! VM is hard!
• Project 3 Due Next Wednesday
• No Labs Next Week

CS 61C L35 Caches IV / VM I (13) Garcia, Fall 2004 © UCB

Ways to reduce miss rate

• Larger cache
• limited by cost and technology
• hit time of first level cache < cycle time

• More places in the cache to put each
block of memory – associativity

• fully-associative
- any block any line

• k-way set associated
- k places for each block
- direct map: k=1

CS 61C L35 Caches IV / VM I (14) Garcia, Fall 2004 © UCB

Improving Miss Penalty
• When caches first became popular,
Miss Penalty ~ 10 processor clock
cycles

• Today 2400 MHz Processor (0.4 ns per
clock cycle) and 80 ns to go to DRAM
⇒ 200 processor clock cycles!

Proc $2

D
R

A
M$

MEM

Solution: another cache between memory and
the processor cache: Second Level (L2) Cache

CS 61C L35 Caches IV / VM I (15) Garcia, Fall 2004 © UCB

Analyzing Multi-level cache hierarchy

Proc $2

D
R

A
M$

L1 hit
time

L1 Miss Rate
L1 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty =
L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate *
(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

L2 hit
time L2 Miss Rate

L2 Miss Penalty

CS 61C L35 Caches IV / VM I (16) Garcia, Fall 2004 © UCB

Typical Scale

• L1
• size: tens of KB
• hit time: complete in one clock cycle
• miss rates: 1-5%

• L2:
• size: hundreds of KB
• hit time: few clock cycles
• miss rates: 10-20%

• L2 miss rate is fraction of L1 misses
that also miss in L2

• why so high?

CS 61C L35 Caches IV / VM I (17) Garcia, Fall 2004 © UCB

Example: with L2 cache

• Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L2 Hit Time = 5 cycles
• L2 Miss rate = 15% (% L1 misses that miss)
• L2 Miss Penalty = 200 cycles

• L1 miss penalty = 5 + 0.15 * 200 = 35
• Avg mem access time = 1 + 0.05 x 35

= 2.75 cycles

CS 61C L35 Caches IV / VM I (18) Garcia, Fall 2004 © UCB

Example: without L2 cache

• Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L1 Miss Penalty = 200 cycles

• Avg mem access time = 1 + 0.05 x 200
= 11 cycles

• 4x faster with L2 cache! (2.75 vs. 11)

CS 61C L35 Caches IV / VM I (19) Garcia, Fall 2004 © UCB

An Actual CPU – Pentium M

CS 61C L35 Caches IV / VM I (20) Garcia, Fall 2004 © UCB

What to do on a write hit?

• Write-through
• update the word in cache block and
corresponding word in memory

• Write-back
• update word in cache block
• allow memory word to be “stale”
⇒ add ‘dirty’ bit to each block indicating
that memory needs to be updated when
block is replaced

⇒ OS flushes cache before I/O…

• Performance trade-offs?

CS 61C L35 Caches IV / VM I (21) Garcia, Fall 2004 © UCB

Generalized Caching

• We’ve discussed memory caching in
detail. Caching in general shows up
over and over in computer systems

• Filesystem cache
• Web page cache
• Game Theory databases / tablebases
• Software memoization
• Others?

• Big idea: if something is expensive but
we want to do it repeatedly, do it once
and cache the result.

CS 61C L35 Caches IV / VM I (22) Garcia, Fall 2004 © UCB

Another View of the Memory Hierarchy
Regs

L2 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

Faster

Larger

Cache
Blocks

Thus far{
{Next:

Virtual
Memory

CS 61C L35 Caches IV / VM I (23) Garcia, Fall 2004 © UCB

Memory Hierarchy Requirements

• If Principle of Locality allows caches
to offer (close to) speed of cache
memory with size of DRAM memory,
then recursively why not use at next
level to give speed of DRAM memory,
size of Disk memory?

• While we’re at it, what other things do
we need from our memory system?

CS 61C L35 Caches IV / VM I (24) Garcia, Fall 2004 © UCB

Memory Hierarchy Requirements

• Share memory between multiple
processes but still provide protection
– don’t let one program read/write
memory from another

• Address space – give each program
the illusion that it has its own private
memory

• Suppose code starts at address
0x40000000. But different processes
have different code, both residing at the
same address. So each program has a
different view of memory.

CS 61C L35 Caches IV / VM I (25) Garcia, Fall 2004 © UCB

Virtual Memory

• Called “Virtual Memory”
• Also allows OS to share memory,
protect programs from each other

• Today, more important for protection
vs. just another level of memory
hierarchy

• Historically, it predates caches

CS 61C L35 Caches IV / VM I (26) Garcia, Fall 2004 © UCB

Peer Instruction

1. Increased associativity (1->2->4->8-way) ⇒
decreased or steady miss rate.

2. Increased associativity ⇒ increased cost &
slower access time.

3. The ratio of costs of a “miss” vs. a “hit” are
within an order of magnitude between VM &
cache

ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS 61C L35 Caches IV / VM I (27) Garcia, Fall 2004 © UCB

And in Conclusion…

• Cache design choices:
• size of cache: speed v. capacity
• direct-mapped v. associative
• for N-way set assoc: choice of N
• block replacement policy
• 2nd level cache?
• Write through v. write back?

• Use performance model to pick
between choices, depending on
programs, technology, budget, ...

• Virtual Memory
• Predates caches; each process thinks it
has all the memory to itself; protection!

