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Google strikes back 
against recent encroachments into 
the Search world with the launch of 
two new services: Keyhole & Scholar.
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Review: Why We Use Caches
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• 1989 first Intel CPU with cache on chip

• 1998 Pentium III has two levels of cache on chip
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Review: Direct-Mapped Cache Example

• Recall this is how a 
simple direct mapped 
cache looked.

Memory
Memory 
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4  Byte Direct 
Mapped Cache

Cache 
Index

0
1
2
3
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Review: Associative Cache Example

• Here’s a simple 2 way set 
associative cache.

Memory
Memory 
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache 
Index

0
0
1
1
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Block Replacement Policy (1/2)

• Direct-Mapped Cache: index completely 
specifies position which position a 
block can go in on a miss

• N-Way Set Assoc: index specifies a set, 
but block can occupy any position 
within the set on a miss

• Fully Associative: block can be written 
into any position

• Question: if we have the choice, where 
should we write an incoming block?
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Block Replacement Policy (2/2)

• If there are any locations with valid bit 
off (empty), then usually write the new 
block into the first one.

• If all possible locations already have a 
valid block, we must pick a 
replacement policy: rule by which we 
determine which block gets “cached 
out” on a miss.



CS 61C L35 Caches IV / VM I (7) Garcia, Fall 2004 © UCB

Block Replacement Policy: LRU

• LRU (Least Recently Used)
• Idea: cache out block which has been 
accessed (read or write) least recently

• Pro: temporal locality ⇒ recent past use 
implies likely future use: in fact, this is a 
very effective policy

• Con: with 2-way set assoc, easy to keep 
track (one LRU bit); with 4-way or 
greater, requires complicated hardware 
and much time to keep track of this
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Block Replacement Example
• We have a 2-way set associative cache 
with a four word total capacity and one 
word blocks.  We perform the 
following word accesses (ignore bytes 
for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4
How many hits and how many misses 
will there be for the LRU block 
replacement policy?
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Block Replacement Example: LRU
• Addresses 0, 2, 0, 1, 4, 0, ... 0 lru

2

1 lru

loc 0 loc 1
set 0

set 1

0 2lruset 0

set 1

0: miss, bring into set 0 (loc 0)

2: miss, bring into set 0 (loc 1)

0: hit

1: miss, bring into set 1 (loc 0)

4: miss, bring into set 0 (loc 1, replace 2)

0: hit

0set 0

set 1

lrulru

0 2set 0

set 1

lru lru

set 0

set 1
0
1 lru

lru24lru

set 0

set 1
0 4
1 lru

lru lru
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Big Idea

• How to choose between associativity, 
block size, replacement policy?

• Design against a performance model
• Minimize: Average Memory Access Time

= Hit Time 
+  Miss Penalty x Miss Rate

• influenced by technology & program 
behavior

• Note: Hit Time encompasses Hit Rate!!!

• Create the illusion of a memory that is 
large, cheap, and fast - on average
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Example

• Assume 
• Hit Time = 1 cycle
• Miss rate = 5%
• Miss penalty = 20 cycles
• Calculate AMAT…

• Avg mem access time 
= 1 + 0.05 x 20
= 1 + 1 cycles
= 2 cycles
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Administrivia

• Do your reading!  VM is hard!
• Project 3 Due Next Wednesday
• No Labs Next Week
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Ways to reduce miss rate

• Larger cache
• limited by cost and technology
• hit time of first level cache < cycle time

• More places in the cache to put each 
block of memory – associativity

• fully-associative
- any block any line

• k-way set associated
- k places for each block
- direct map: k=1 
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Improving Miss Penalty
• When caches first became popular, 
Miss Penalty ~ 10 processor clock 
cycles

• Today 2400 MHz Processor (0.4 ns per 
clock cycle) and 80 ns to go to DRAM 
⇒ 200 processor clock cycles!

Proc $2

D
R

A
M$

MEM

Solution: another cache between memory and 
the processor cache: Second Level (L2) Cache
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Analyzing Multi-level cache hierarchy

Proc $2

D
R

A
M$

L1 hit 
time

L1 Miss Rate
L1 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty =
L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * 
(L2 Hit Time +  L2 Miss Rate * L2 Miss Penalty)

L2 hit 
time L2 Miss Rate

L2 Miss Penalty
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Typical Scale

• L1 
• size: tens of KB
• hit time: complete in one clock cycle
• miss rates: 1-5%

• L2:
• size: hundreds of KB
• hit time: few clock cycles
• miss rates: 10-20%

• L2 miss rate is fraction of L1 misses 
that also miss in L2

• why so high?
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Example: with L2 cache

• Assume 
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L2 Hit Time = 5 cycles
• L2 Miss rate = 15%  (% L1 misses that miss)
• L2 Miss Penalty = 200 cycles

• L1 miss penalty = 5 + 0.15 * 200 = 35
• Avg mem access time = 1 + 0.05 x 35

= 2.75 cycles
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Example: without L2 cache

• Assume 
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L1 Miss Penalty = 200 cycles

• Avg mem access time = 1 + 0.05 x 200
= 11 cycles

• 4x faster with L2 cache! (2.75 vs. 11)
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An Actual CPU – Pentium M

CS 61C L35 Caches IV / VM I (20) Garcia, Fall 2004 © UCB

What to do on a write hit?

• Write-through
• update the word in cache block and 
corresponding word in memory

• Write-back
• update word in cache block
• allow memory word to be “stale”
⇒ add ‘dirty’ bit to each block indicating 
that memory needs to be updated when 
block is replaced

⇒ OS flushes cache before I/O…

• Performance trade-offs?
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Generalized Caching

• We’ve discussed memory caching in 
detail.  Caching in general shows up 
over and over in computer systems

• Filesystem cache
• Web page cache
• Game Theory databases / tablebases
• Software memoization
• Others?

• Big idea: if something is expensive but 
we want to do it repeatedly, do it once 
and cache the result.
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Another View of the Memory Hierarchy
Regs

L2 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

Faster

Larger

Cache
Blocks

Thus far{
{Next:

Virtual
Memory
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Memory Hierarchy Requirements

• If Principle of Locality allows caches 
to offer (close to) speed of cache 
memory with size of DRAM memory,
then recursively why not use at next 
level to give speed of DRAM memory,  
size of Disk memory?

• While we’re at it, what other things do 
we need from our memory system?
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Memory Hierarchy Requirements

• Share memory between multiple 
processes but still provide protection 
– don’t let one program read/write 
memory from another

• Address space – give each program 
the illusion that it has its own private 
memory

• Suppose code starts at address 
0x40000000.  But different processes 
have different code, both residing at the 
same address.  So each program has a 
different view of memory.
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Virtual Memory

• Called “Virtual Memory”
• Also allows OS to share memory, 
protect programs from each other

• Today, more important for protection
vs. just another level of memory 
hierarchy

• Historically, it predates caches
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Peer Instruction

1. Increased associativity (1->2->4->8-way) ⇒
decreased or steady miss rate. 

2. Increased associativity ⇒ increased cost & 
slower access time.

3. The ratio of costs of a “miss” vs. a “hit” are 
within an order of magnitude between VM & 
cache 

ABC
1: FFF
2: FFT 
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT
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And in Conclusion…

• Cache design choices:
• size of cache: speed v. capacity
• direct-mapped v. associative
• for N-way set assoc: choice of N
• block replacement policy
• 2nd level cache?
• Write through v. write back?

• Use performance model to pick 
between choices, depending on 
programs, technology, budget, ...

• Virtual Memory
• Predates caches; each process thinks it 
has all the memory to itself; protection!


