CS61C : Machine Structures

Lecture 36
VMII

2004-11-22
Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

#4 Bears crush Stanford g

In the 9t"-longest rivalry in the US,
we get the most dominant win (41-6) since 1930!
JJ Arrington ran for 169yds, a school record for a
single-season and is now the only RB in the US to |

have run for 100yds in every game this season.

We now must best Southern Miss on Dec 4...
calbears.collegesports.com/sports/m-footbl/recaps/112004aac.html
CS61C L36 VM Il (1) Garcia, Fall 2004 @ UCB

Virtual to Physical Addr. Translation

Program i
operates in HW A
its virtual . mapping o
address virtual physical (incl. caches)
space address address

(inst. fetch (inst. fetch

load, store) load, store)

» Each program operates in its own virtual
address space; ~only program running

¢ Each is protected from the other

*OS can decide where each goes in
memory

«Hardware (HW) provides virtual =
ysical mapping

CSB1C L36 VM I (3) Garcia, Fall 2004 © UCB

Simple Example: Base and Bound Reg

”S\
Enough space for User D,

"~ but discontinuous
User B “fragmentation problem”)

$base “ s Want discontinuous
mapping

*Process size >> mem

Sbase+
$bound

+ Addition not enough!
0 = use Indirection!

g CSB1C L36 VI 11 (5) Garcia, Fall 2004 © UCB

Review...

» Cache design choices:
« size of cache: speed v. capacity
« direct-mapped v. associative
- for N-way set assoc: choice of N
+ block replacement policy
+» 2nd level cache?
* Write through v. write back?

* Use performance model to pick
between choices, depending on
programs, technology, budget, ...

¢ Virtual Memory

* Predates caches; each process thinks it
has all the memory to itself; protection!

CSB1C L36 VM I () Garcia, Fall 2004 © UCB

Analogy

*Book title like virtual address

eLibrary of Congress call number like
physical address

« Card catalogue like page table
mapping from book title to call #

«On card for book, in local library vs.
in another branch like valid bit
indicating in main memory vs. on disk

*On card, available for 2-hour in library
use (vs. 2-week checkout) like access

rights
CS61C L36 VM II (4) Garcia, Fall 2004 @ UCB.

Mapping Virtual Memory to Physical Memory

+Divide into equal sized Virtual Memory
chunks (about 4 KB - 8 KB)

¢ Any chunk of Virtual
Memory assigned to any T
chuck of Physical Memor v
(“page”)
64 MB P jv t
Static
0 0

CSB1C L36 VI 11 (6) Garcia, Fall 2004 © UCB

Paging Organization (assume 1 KB pages)

Physical Page is unit Virtual

Address ___of mapping Address
0 1K 0 1K

1024 1K 1024 |page 1[1K

2048 |page 2{1K
7168 1K
Physical 1744 |page 31| 1K

Memory Page also unit of .
transfer from disk Virtual
to physical memory Memory

g CSB1C L36 V1 1l (@)

Garcia, Fall 2004 © UCB

Address Mapping: Page Table
Virtual Address:

page no.

Page Table Pi'.qe Table

Base Reg V: AR. (P.P.A
index| |valiAccess:Physical _
into | | -id :Rights :Page
page : Address | Physical
table : Memory

: Address

@Page Table located in physical memory

CSB1C L36 V11 1 (9) Garcia, Fall 2004 © UCB.

Requirements revisited

* Remember the motivation for VM:

«Sharing memory with protection

- Different physical pages can be
allocated to different processes (sharing)

+ A process can only touch pages in its
own page table (protection)
«Separate address spaces

« Since programs work only with virtual
addresses, different programs can have
different data/code at the same address!

@What about the memory hierarchy?

CSB1C L36 VM 11 (1)

Garcia, Fall 2004 © UCB

Virtual Memory Mapping Function

< Cannot have simple function to
predict arbitrary mapping

*Use table lookup of mappings
Page Number |Offset|

«Use table lookup (“Page Table”) for
mappings: Page number is index
«Virtual Memory Mapping Function
+ Physical Offset = Virtual Offset

* Physical Page Number
= PageTable[Virtual Page Number]

(P.P.N. also called “Page Frame”)

CSB1C L36 VM I (®)

Garcia, Fall 2004 © UCB

Page Table

¢ A page table is an operating system
structure which contains the mapping
of virtual addresses to physical
locations

* There are several different ways, all up to

the operating system, to keep this data
around

*Each process running in the operating
system has its own page table

- “State” of process is PC, all registers, plus
page table

+ OS changes page tables by changing
@ contents of Page Table Base Register

CSB1C L36 VI 11 (10)

Garcia, Fall 2004 © UCB

Page Table Entry (PTE) Format

« Contains either Physical Page Number
or indication not in Main Memory

«OS maps to disk if Not Valid (V =0)

Page Table V: A.R. ;P.P.N. \
Val: Access:Physical
-id i Rights iPage <«— P.T.E.

Number /

V: AR. iP.P.N.

«If valid, also check if have permission
to use page: Access Rights (A.R.)

may be Read Only, Read/Write,
@ Executable

CSBIC L36 VM 11 (12)

Garcia, Fall 2004 © UCB

Paging/Virtual Memory Multiple Processes Comparing the 2 levels of hierarchy
User A: User B: Cache Version Virtual Memory vers.
Virtual Memory Virtual Memory .
00 Physical 00 Block or Line Page
64 MBIMemory Stack Miss Page Fault
| Block Size: 32-64B Page Size: 4K-8KB
! "\ | ! Placement: Fully Associative
- Direct MaPRed, L
> > N-way Set Associative
| Static| Replacement: Least Recently Used
A B LRU or Random (LRU)
P P . .
0 aade T:lglz 0 T:lglz o =" ﬂrlte Thru or Back Write Back
Notes on Page Table Administrivia?

* Solves Fragmentation problem: all chunks
same size, so all holes can be used

¢ OS must reserve “Swap Space” on disk for
each process

* To grow a process, ask Operating System
- If unused pages, OS uses them first
- If not, OS swaps some old pages to disk
+ (Least Recently Used to pick pages to swap)

« Each process has own Page Table

« Will add details, but Page Table is essence of
Virtual Memory

g CS61C L36 VI Il (15) Garcia, Fall 2004 © UCB g CS61C L36 VI I (16)

Garcia, Fall 2004 © UCB

Virtual Memory Problem #1 Translation Look-Aside Buffers (TLBs)
*Map every address = 1 indirection via *TLBs usually small, typically 128 - 256 entries
Page Table in memory per virtual
address = 1 virtual memory accesses = + Like any other cache, the TLB can be direct
2 physical memory accesses = SLOW! mapped, set associative, or fully associative
» Observation: since locality in pages of VA hit PA miss
dg&a, there mulst be Iocfalrllty in virtual LB Main
address translations of those pages
pag Processor Lookup Cache Memory
+Since small is fast, why not use a small tmiss | | hit
cache of virtual to physical address Frans]
translations to make translation fast? lation
«For historical reasons, cache is called a _ —v, data _
E Translation Lookaside Buffer, or TLB On TLB miss, get page table entry from main memory

Typical TLB Format

Virtual [Physical|Dirty|Ref|Valid| Access
Address | Address Rights

* TLB just a cache on the page table mappings

* TLB access time comparable to cache
(much less than main memory access time)
* Dirty: since use write back, need to know
whether or not to write page to disk when replaced
*Ref: Used to help calculate LRU on replacement
* Cleared by OS periodically, then checked to
see if page was referenced

CS61C L36 V11 11 (19) Garcia, Fall 2004 © UCB

What if the data is on disk?

*We load the page off the disk into a
free block of memory, using a DMA
(Direct Memory Access — very fast!)
transfer

* Meantime we switch to some other
process waiting to be run

*«When the DMA is complete, we get an
interrupt and update the process's
page table

» So when we switch back to the task, the
desired data will be in memory

@ CS61C L36 VI Il 21) Garcia, Fall 2004 © UCB

Peer Instruction

A. Locality is important yet different for cache ABC
and virtual memory (VM): temporal locality : FFF

for caches but spatial locality for VM
: FTF

B. Cache management is done by hardware . FTT

: FFT

operating system (0S), but TLB management . TET
is either by HW or OS . TTE

What if not in TLB?

*Option 1: Hardware checks page table
?_rLI% loads new Page Table Entry into

-Ogtion 2: Hardware traps to OS, up to
OS to decide what to do

» MIPS follows Option 2: Hardware knows
nothing about page table

@ CS61C L36 VI Il (20) Garcia, Fall 2004 © UCB

What if we don’t have enough memory?

*We chose some other page belonging
to a program and transfer it onto the
disk if it is dirty

« If clean (disk copy is up-to-date),
just overwrite that data in memory

* We chose the page to evict based on
replacement policy (e.g., LRU)

* And update that program's page table
to reflect the fact that its memory
moved somewhere else

«If continuously swap between disk

1
2
3
(HW), page table management by the é: TFF
6
7
8

C. VM helps both with security and cost ¢ TIT

CS61C L36 VI Il (23) Garcia, Fall 2004 © UCB

Qand memory, called Thrashing

CS61C L36 VI Il (22) Garcia, Fall 2004 © UCB

And in conclusion...

*Manage memory to disk? Treat as cache
* Included protection as bonus, now critical

» Use Page Table of mappings for each user
vs. tag/data in cache

*TLB is cache of Virtual=Physical addr trans

«Virtual Memory allows protected sharing
of memory between processes

+ Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

@ CS61C L36 VI Il (25) Garcia, Fall 2004 © UCB

