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“Japan's growing elderly population
will be able to buy companionship in the form of a

robot, programmed to provide just enough small talk to
keep them from going senile. Snuggling Ifbot, dressed

in an astronaut suit with a glowing face, has the
conversation ability of a five-year-old, the language

level needed to stimulate the brains of sr citizens”

I talk to robots… ⇒

www.thematuremarket.com/SeniorStrategic/dossier.php?numtxt=3567&idrb=5
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Review
•Protocol suites allow heterogeneous
networking
• Another form of principle of abstraction
• Protocols ⇒ operation in presence of failures
• Standardization key for LAN, WAN

• Integrated circuit (“Moore’s Law”)
revolutionizing network switches as well
as processors
• Switch just a specialized computer

•Trend from shared to switched networks
to get faster links and scalable bandwidth
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Magnetic Disks

•Purpose:
•  Long-term, nonvolatile, inexpensive
storage for files

•  Large, inexpensive, slow level in the
memory hierarchy (discuss later)
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Photo of Disk Head, Arm, Actuator

Actuator

Arm

Head

Platters (12)

{
Spindle



CS61C L40 I/O: Disks (5) Garcia, Fall 2004 © UCB

Disk Device Terminology

• Several platters, with information recorded
magnetically on both surfaces (usually)

• Actuator moves head (end of arm) over track
(“seek”), wait for sector rotate under head, then
read or write

• Bits recorded in tracks, which in turn divided into
sectors (e.g., 512 Bytes)
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Disk Device Performance
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• Disk Latency = Seek Time + Rotation Time +
Transfer Time + Controller Overhead

• Seek Time? depends no. tracks move arm, seek
speed of disk

• Rotation Time? depends on speed disk rotates, how
far sector is from head

• Transfer Time? depends on data rate (bandwidth) of
disk (bit density), size of request

ControllerSpindle
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Data Rate: Inner vs. Outer Tracks 
•To keep things simple,
originally same # of sectors/track

• Since outer track longer, lower bits per inch

•Competition decided to keep bits/inch
(BPI) high for all tracks (“constant bit
density”)

• More capacity per disk
• More sectors per track towards edge
• Since disk spins at constant speed,
outer tracks have faster data rate

•Bandwidth outer track 1.7X inner track!
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Disk Performance Model /Trends
•  Capacity : + 100% / year (2X / 1.0 yrs)

Over time, grown so fast that # of platters has reduced
(some even use only 1 now!)

• Transfer rate (BW) : + 40%/yr (2X / 2 yrs)
• Rotation+Seek time : – 8%/yr (1/2 in 10 yrs)
• Areal Density

• Bits recorded along a track: Bits/Inch (BPI)
• # of tracks per surface: Tracks/Inch (TPI)
• We care about bit density per unit area Bits/Inch2

• Called Areal Density = BPI x TPI
•MB/$: > 100%/year (2X / 1.0 yrs)

• Fewer chips + areal density
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Disk History (IBM)

Data 
density
Mibit/sq. in.
Capacity of
Unit Shown
Mibytes

1973:
1. 7 Mibit/sq. in
0.14 GiBytes

1979:
7. 7 Mibit/sq. in
2.3 GiBytes

source: New York Times, 2/23/98, page C3, 
“Makers of disk drives crowd even more data into even smaller spaces”
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Disk History

1989:
63 Mibit/sq. in
60 GiBytes

1997:
1450 Mibit/sq. in
2.3 GiBytes

source: New York Times, 2/23/98, page C3, 
“Makers of disk drives crowd even more data into even smaller spaces”

1997:
3090 Mibit/sq. in
8.1 GiBytes
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Historical Perspective
• Form factor and capacity drives

market, more than performance
• 1970s: Mainframes ⇒ 14" diam. disks
• 1980s: Minicomputers, Servers
⇒ 8", 5.25" diam. disks
• Late 1980s/Early 1990s:

• Pizzabox PCs ⇒ 3.5 inch diameter disks
• Laptops, notebooks ⇒ 2.5 inch disks
• Palmtops didn’t use disks,

so 1.8 inch diameter disks didn’t make it
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State of the Art: Barracuda 7200.7 (2004)
• 200 GB, 3.5-inch disk
• 7200 RPM; Serial ATA
• 2 platters, 4 surfaces
• 8 watts (idle)
• 8.5 ms avg. seek
• 32 to 58 MB/s Xfer

rate
• $125 = $0.625 / GB

source: www.seagate.com;
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1 inch disk drive!
•2004 Hitachi Microdrive:

•  1.7” x 1.4” x 0.2”
• 4 GB, 3600 RPM,
4-7 MB/s, 12 ms seek

• Digital cameras, PalmPC

•2006 MicroDrive?
•16 GB, 10 MB/s!

• Assuming past
trends continue
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Use Arrays of Small Disks…

14”
10”5.25”3.5”

3.5”

Disk Array:
1 disk design

Conventional:
4 disk
designs

Low End High End

• Katz and Patterson asked in 1987:
• Can smaller disks be used  to close gap in
performance between disks and CPUs?
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Replace Small Number of Large Disks with
Large Number of Small Disks! (1988 Disks)

Capacity 
Volume 
Power
Data Rate 
I/O Rate   
MTTF  
Cost

IBM 3390K
20 GBytes
97 cu. ft.

3 KW
15 MB/s

600 I/Os/s
250 KHrs

$250K

IBM 3.5" 0061
320 MBytes

0.1 cu. ft.
11 W

1.5 MB/s
55 I/Os/s
50 KHrs

$2K

x70
23 GBytes
11 cu. ft.

1 KW
120 MB/s

3900 IOs/s
??? Hrs
$150K

Disk Arrays potentially high performance, high
MB per cu. ft., high MB per KW, 

but what about reliability?

9X
3X
8X
6X
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Array Reliability
•Reliability - whether or not a
component has failed
• measured as Mean Time To Failure (MTTF)

•Reliability of N disks
= Reliability of 1 Disk ÷ N
(assuming failures independent)
• 50,000 Hours ÷ 70 disks = 700 hour

•Disk system MTTF:
Drops from 6 years  to 1 month!

•Disk arrays too unreliable to be useful!
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Redundant Arrays of (Inexpensive) Disks
•Files are “striped” across multiple disks

•Redundancy yields high data availability
• Availability: service still provided to user,
even if some components failed

•Disks will still fail
•Contents reconstructed from data
redundantly stored in the array
⇒ Capacity penalty to store redundant info
⇒ Bandwidth penalty to update redundant info
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Berkeley History, RAID-I
•RAID-I (1989)

• Consisted of a Sun
4/280 workstation with
128 MB of DRAM, four
dual-string SCSI
controllers, 28 5.25-
inch SCSI disks and
specialized disk
striping software

•Today RAID is > $27
billion dollar
industry, 80% nonPC
disks sold in RAIDs
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“RAID 0”: No redundancy = “AID”

•Assume have 4 disks of data for this
example, organized in blocks
•Large accesses faster since transfer
from several disks at once

This and next 5 slides from RAID.edu,  http://www.acnc.com/04_01_00.html
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RAID 1: Mirror data

•  Each disk is fully duplicated onto its “mirror”
• Very high availability can be achieved

• Bandwidth reduced on write:
• 1 Logical write = 2 physical writes

•Most expensive solution: 100% capacity
overhead
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RAID 3: Parity 

• Parity computed across group to protect
against hard disk failures, stored in P disk
• Logically, a single high capacity, high transfer

rate disk
• 25% capacity cost for parity in this example

vs. 100% for RAID 1 (5 disks vs. 8 disks)
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RAID 4: parity plus small sized accesses

• RAID 3 relies on parity disk to discover errors on
Read
• But every sector has an error detection field
• Rely on error detection field to catch errors on

read, not on the parity disk
• Allows small independent reads to different disks

simultaneously
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Inspiration for RAID 5
•Small writes (write to one disk):

• Option 1: read other data disks, create new
sum and write to Parity Disk (access all disks)

• Option 2: since P has old sum, compare old
data to new data, add the difference to P:
1 logical write = 2 physical reads + 2 physical
writes to 2 disks

•Parity Disk is bottleneck for Small writes:
Write to A0, B1 => both write to P disk

A0 B0 C0 D0 P

A1 B1 C1 PD1



CS61C L40 I/O: Disks (24) Garcia, Fall 2004 © UCB

RAID 5: Rotated Parity, faster small writes

• Independent writes possible because of
interleaved parity

• Example: write to A0, B1 uses
disks 0, 1, 4, 5, so can proceed in parallel

• Still 1 small write = 4 physical disk accesses
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Peer Instruction

1. RAID 1 (mirror) and 5 (rotated parity)
help with performance and availability

2. RAID 1 has higher cost than RAID 5
3. Small writes on RAID 5 are slower than

on RAID 1

   ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT
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“And In conclusion…”
•Magnetic Disks continue rapid advance:
60%/yr capacity, 40%/yr bandwidth, slow
on seek, rotation improvements,
MB/$ improving 100%/yr?
• Designs to fit high volume form factor

•RAID
• Higher performance with more disk arms per $
• Adds option for small # of extra disks
• Today RAID is > $27 billion dollar industry,
80% nonPC disks sold in RAIDs; started at Cal


