
1

CS61c – Final Review
Fall 2004

Andy Carle
12/12/2004

Topics Before Midterm

• C & Malloc
• Memory Management
• MIPS
• Number Representation
• Floating Point
• CAL

Topics Since Midterm

• Digital Logic
– Verilog
– State Machines

• CPU Design
• Pipelining
• Caches
• Virtual Memory
• I/O and Performance

Today’s Focus

• Focus on material from after the
midterm. Don’t forget to go back and
look over the old review session and
your midterm

• More emphasis on material that we
covered just after the midterm, less on
stuff from the past few weeks.
– Lots of stuff on digital logic
– Like one slide on performance

• My intent is to help you “page in” (no
replacement policy, please) material
from the second half of the course that
you may have long since forgotten

Topics Since Midterm

• Digital Logic
– Verilog
– State Machines

• CPU Design
• Pipelining
• Caches
• Virtual Memory
• I/O and Performance

Digital Logic (and such)

• Truth Tables
• Boolean Algebra
• Canonical SOP
• Combinational Logic
• State Machines
• Timing Diagrams & Tables
• Programmable Logic Arrays

2

Digital Logic – Truth Tables

• A table describing the output of
a function for every possible
input

• Usually done bitwise when
dealing with digital logic

• 2n entries (each input can have
two possible states)

Digital Logic – Boolean Operators

B A AND OR NAND NOR XOR XNOR NOT
0 0 0 0 1 1 0 1 1
0 1 0 1 1 0 1 0 0
1 0 1 1 0 0 1 0
1 1 1 1 0 0 0 1

AB A+B (AB)’ (A+B)’ A⊕B A≡B A’

Digital Logic – Boolean Algebra

• An algebraic expression using Boolean
operators
– e.g. AB + A’B + A(B+C’)

• Similar laws to normal algebra
– Distributive: AB + A’B + AB + AC’
– Idempotent: AB + A’B + AC’
– Complementarity: B + AC’

Digital Logic – Boolean Algebra Laws

Digital Logic – Boolean Algebra

Minimize the following using Boolean
Algebra simplification rules:

What does this function do?

(()) ()s a ab b a b= + + + +(()) ()s a ab b a b= + + + +

(()) ()s a ab b a b= + + + +

Digital Logic – Boolean Algebra Solution

Simplifies to:

s ab ab= +
This is an XOR

3

Digital Logic – Canonical SOP Form

• Standardized form to describe a truth
table uniquely

• For every 1 in the output column of
the Truth Table have a term in the
SOP

• Put every input variable in every term,
with the ones that were 0 for that entry
in the TT negated

Digital Logic – Combinational Logic

• Built from Boolean Algebra
operators turned in to gates

• Output is purely a function of
current input

• Therefore, can not have memory or
remember state

• However, this is perfect for
describing a truth table as we have
seen it so far!

Digital Logic – Sequential Logic & State

• To implement many practical circuits
we need some form of “memory”.

• Registers (created from Flip Flops) are
our statefull circuit elements.

• Adding state to a circuit introduces a
notion of time centered around a clock
– Complicates Truth Table
– Necessitates Timing Diagrams

Digital Logic – Timing

Digital Logic – Finite State Machines

• An abstraction of any system with a
finite number of states and logical
transitions between them

• Useful when trying to come up with
the truth table for a problem

• States in a FSM are represented by
data stored in registers

Digital Logic – Putting It All Together

Exercise
Come up with the FSM, Truth Table
(NS/Output), Canonical SOP form,
Simplified Boolean Equation, and
circuit diagram for this function over
a continuous bit stream:

Output 1 if the input was a 0. Output 0
if the input was a 1. Unless it was
the 3rd 1 in a row, in which case you
output 1 (and start over counting 1s.

4

FSM Solution – Created At Review Solution

• MSB(NS) = S1’ * S0 * n

• LSB(NS) = S1’ * S0’ * n

• OUT = S1’ * n’ + S1 * S0’

Digital Logic – Verilog

• Hardware Description Language
• Verilog description is a collection of

interconnected modules
• All modules work in parallel
• Structural vs. Behavioral

Digital Logic – Verilog

Exercise
Implement the following circuit in both
structural and behavioral Verilog:

Digital Logic – Verilog

Behavioral

module pri_enc(in0, in1, in2, e0, e1);
input in0, in1, in2;
output e0, e1;
assign e0 = (~in1 & in0) | in2;
assign e1 = in1 | in2;

endmodule;

Digital Logic – Verilog

Structural

module pri_enc(in0, in1, in2, e0, e1);
input in0, in1, in2;
output e0, e1;
wire notIn1, and01;
not(in1, notIn1);
and(notIn1, in0, and01);
or(and01, in2, e0);
or(in1, in2, e1);

endmodule;

5

Digital Logic – Programmable Logic Arrays

• Creating customized hardware is
expensive

• We would like to be able to pre-
fabricate a circuit and then allow it to
be programmed by the developer

• PLAs are the answer!
• Review how to program one on your

own

Topics Since Midterm

• Digital Logic
– Verilog
– State Machines

• CPU Design
• Pipelining
• Caches
• Virtual Memory
• I/O and Performance

Single Cycle CPU Design

• Overview Picture
• Two Major Issues

– Datapath
– Control

• Control is the hard part, but is make
easier by the format of MIPS
instructions

Single-Cycle CPU Design

Data
Out

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
L

U

Clk

Data
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

32

32
3232
A

B

N
ex

t A
dd

re
ss

Control

Datapath

Control Signals Conditions

CPU Design – Steps to Design/Understand a CPU

• 1. Analyze instruction set architecture (ISA) =>
datapath requirements

• 2. Select set of datapath components and establish
clocking methodology

• 3. Assemble datapath meeting requirements
• 4. Analyze implementation of each instruction to

determine setting of control points.
• 5. Assemble the control logic

ng it All Together:A Single Cycle Data

im
m

16

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

=

A
dder

A
dder

PC

Clk

00M
ux

4

nPC_sel

PC
 E

xt

Adr

Inst
Memory

6

CPU Design – Components of the Datapath

• Memory (MEM)
– instructions & data

• Registers (R: 32 x 32)
– read RS
– read RT
– Write RT or RD

• PC
• Extender (sign extend)
• ALU (Add and Sub register or extended

immediate)
• Add 4 or extended immediate to PC

CPU Design – Control Signals

• Branch: 1 for branch, 0 for other
• ALU control
• MemWrite, MemRead(=MemtoReg): 1 if writing

to/reading from memory, 0 if not
• ALUSrc: choice of ALU input; 1 for immed, 0 for

reg
• RegWrite: 1 if writing a reg, 0 if not
• RegDst: 1 if output reg is specified in bits 15-11

(R-fmt), 0 if output reg is in bits 20-16 (I-fmt)
• MemtoReg: 1 if writing reg from memory, 0 if

writing reg from ALU
• PCSrc: 1 for branch address, 0 for PC+4

CPU Design – Instruction Implementation

• Instructions supported (for our
sample processor):
– lw, sw
– beq
– R-format (add, sub, and, or, slt)
– corresponding I-format (addi …)

• You should be able to,
– given instructions, write control signals
– given control signals, write

corresponding instructions in MIPS
assembly

What Does An ADD Look Like?
im

m
16

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

=

A
dder

A
dder

PC

Clk

00M
ux

4

nPC_sel

PC
 E

xt

Adr

Inst
Memory

Add

32

ALUctr = Add

Clk

busW

RegWr = 1

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst = 1

E
xtender

M
ux

Mux

3216
imm16

ALUSrc = 0

M
ux

MemtoReg = 0

Clk

Data In
WrEn

32
Adr

Data
Memory

32

MemWr = 0

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>• R[rd] = R[rs] + R[rt]

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

op rs rt rd shamt funct
061116212631

PCSrc= 0

How About ADDI?

im
m

16

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

=

A
dder

A
dder

PC

Clk

00M
ux

4

nPC_sel

PC
 E

xt

Adr

Inst
Memory

7

Addi

32

ALUctr = Add

Clk

busW

RegWr = 1

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst = 0

E
xtender

M
ux

Mux

3216imm16

ALUSrc = 1

M
ux

MemtoReg = 0

Clk

Data In
WrEn

32
Adr

Data
Memory

32

MemWr = 0

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>
• R[rt] = R[rs] + SignExt[Imm16]

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

op rs rt immediate
016212631

PCSrc= 0

One More: lw

im
m

16

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

=

A
dder

A
dder

PC
Clk

00M
ux

4

nPC_sel

PC
 E

xt

Adr

Inst
Memory

lw

32

ALUctr = Add

Clk

busW

RegWr = 1

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst = 0

E
xtender

M
ux

Mux

3216
imm16

ALUSrc = 1

M
ux

MemtoReg = 1

Clk

Data In
WrEn

32
Adr

Data
Memory

32

MemWr = 0

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

• R[rt] = Data Memory {R[rs] + SignExt[imm16]}

op rs rt immediate
016212631

PCSrc=0

A Summary of the Control Signals (1/2)
inst Register Transfer

ADD R[rd] <– R[rs] + R[rt]; PC <– PC + 4

ALUsrc = RegB, ALUctr = “add”, RegDst = rd, RegWr, nPC_sel = “+4”

SUB R[rd] <– R[rs] – R[rt]; PC <– PC + 4

ALUsrc = RegB, ALUctr = “sub”, RegDst = rd, RegWr, nPC_sel = “+4”

ORi R[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4

ALUsrc = Im, Extop = “Z”, ALUctr = “or”, RegDst = rt, RegWr, nPC_sel =“+4”

LOAD R[rt] <– MEM[R[rs] + sign_ext(Imm16)]; PC <– PC + 4

ALUsrc = Im, Extop = “Sn”, ALUctr = “add”,
MemtoReg, RegDst = rt, RegWr, nPC_sel = “+4”

STORE MEM[R[rs] + sign_ext(Imm16)] <– R[rs]; PC <– PC + 4

ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemWr, nPC_sel = “+4”

BEQ if (R[rs] == R[rt]) then PC <– PC + sign_ext(Imm16)] || 00 else PC <– PC + 4

nPC_sel = “Br”, ALUctr = “sub”

A Summary of the Control Signals (2/2)

add sub ori lw sw beq jump
RegDst
ALUSrc
MemtoReg
RegWrite
MemWrite
nPCsel
Jump
ExtOp
ALUctr<2:0>

1
0
0
1
0
0
0
x

Add

1
0
0
1
0
0
0
x

Subtract

0
1
0
1
0
0
0
0

Or

0
1
1
1
0
0
0
1

Add

x
1
x
0
1
0
0
1

Add

x
0
x
0
0
1
0
x

Subtract

x
x
x
0
0
0
1
x

xxx

op target address

op rs rt rd shamt funct
061116212631

op rs rt immediate

R-type

I-type

J-type

add, sub

ori, lw, sw, beq

jump

func
op 00 0000 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010Appendix A

10 0000See 10 0010 We Don’t Care :-) Control

ALUctrRegDst ALUSrc MemtoRegMemWr Zero

Instruction<31:0>

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

PCSrc

Adr

Inst
Memory

DATA PATH

Control

Op

<21:25>

Fun

RegWr

8

CPU Design – Designing the Control

• ISA design
– Instruction formats
– opcode/funct assignment

• Truth table
• Logic expressions of control signals
• Simplified logic expressions

• Similar instructions producing similar
control signals should have similar
opcode/funct code
– Add(funct=32) / Addu(funct=33)

BREAK!

Topics Since Midterm

• Digital Logic
– Verilog
– State Machines

• CPU Design
• Pipelining
• Caches
• Virtual Memory
• I/O and Performance

Pipelining

• View the processing of an
instruction as a sequence of
potentially independent steps

• Use this separation of stages to
optimize your CPU by starting to
process the next instruction while
still working on the previous one

• In the real world, you have to deal
with some interference between
instructions

Review Datapath

PC

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
Register
Read

3. Execute 4. Memory5. Write
Back

Sequential Laundry

• Sequential laundry takes
8 hours for 4 loads

T
a
s
k

O
r
d
e
r

B

C
D

A
30

Time
3030 3030 30 3030 3030 3030 3030 3030

6 PM 7 8 9 10 11 12 1 2 AM

9

Pipelined Laundry

• Pipelined laundry takes
3.5 hours for 4 loads!

T
a
s
k

O
r
d
e
r

B
C
D

A

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

Pipelining -- Key Points

• Pipelining doesn’t help latency of
single task, it helps throughput of
entire workload

• Multiple tasks operating
simultaneously using different
resources

• Potential speedup = Number pipe
stages

• Time to “fill” pipeline and time to
“drain” it reduces speedup

Pipelining -- Limitations

• Pipeline rate limited by slowest
pipeline stage

• Unbalanced lengths of pipe
stages also reduces speedup

• Interference between
instructions – called a hazard

Pipelining -- Hazards

• Hazards prevent next instruction
from executing during its designated
clock cycle
– Structural hazards: HW cannot support

this combination of instructions (single
person to fold and put clothes away)

– Control hazards: Pipelining of branches
& other instructions stall the pipeline
until the hazard; “bubbles” in the
pipeline

– Data hazards: Instruction depends on
result of prior instruction still in the
pipeline (missing sock)

Pipelining – Structural Hazards

• Avoid memory hazards by having
two L1 caches – one for data and
one for instructions

• Avoid register conflicts by always
writing in the first half of the clock
cycle and reading in the second
half
– This is ok because registers are much

faster than the critical path

Pipelining – Control Hazards

• Occurs on a branch or jump instruction
• Optimally you would always branch

when needed, never execute
instructions you shouldn’t have, and
always have a full pipeline
– This generally isn’t possible

• Do the best we can
– Optimize to 1 problem instruction
– Stall
– Branch Delay Slot

10

Pipelining – Data Hazards

• Occur when one instruction is
dependant on the results of an
earlier instruction

• Can be solved by forwarding
for all cases except a load
immediately followed by a
dependant instruction
– In this case we detect the problem

and stall (for lack of a better plan)

Pipelining -- Exercise

Assuming one instruction executed per clock
cycle, delayed branch, forwarding, interlock on
load hazards, and a full pipeline: how many
cycles will this code take? Where is there
forwarding?

Loop: lw, $t0, 0($s1)

addu, $t0, $t0, $s2

sw, $t0, 0($s1)

addiu, $s1, $s1, -4

bne, $s1, $zero, Loop

addu $s3, $t1, $t1

Topics Since Midterm

• Digital Logic
– Verilog
– State Machines

• CPU Design
• Pipelining
• Caches
• Virtual Memory
• I/O and Performance

Caches

• The Problem: Memory is slow
compared to the CPU

• The Solution: Create a fast layer in
between the CPU and memory that
holds a subset of what is stored in
memory

• We call this creature a Cache

Caches – Reference Patterns

• Holding an arbitrary subset of memory in
a faster layer should not provide any
performance increase
– Therefore we must carefully choose what to

put there
• Temporal Locality: When a piece of data

is referenced once it is likely to be
referenced again soon

• Spatial Locality: When a piece of data is
referenced it is likely that the data near it
in the address space will be referenced
soon

Caches – Format & Mapping

oooooo(lsb)iiiiiiiiiiiii(msb)tttttttttttttttttttt
OffsetIndexTag

•Tag: Unique identifier for each block in
memory that maps to same index in cache
•Index: Which “row” in the cache the data
block will map to (for direct mapped cache
each row is a single cache block)
•Block Offset: Byte offset within the block
for the particular word or byte you want to
access

11

Caches – Direct Mapped

• Cache Location 0 can be
occupied by data from:
– Memory location 0, 4, 8, ...
– 4 blocks => any memory location

that is multiple of 4

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

Caching – Associative

Here’s a
simple 2-
way set
associative
cache.

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache
Index

0
0
1
1

Caches -- Block Size Tradeoff

Miss
Penalty

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access

Time

Block Size

Exploits Spatial Locality

Fewer blocks:
compromises
temporal localit

Miss
Rate

Block Size

Caches – Exercise 1

How many bits would be required to implement
the following cache?

Size: 1MB
Associativity: 8-way set associative
Write policy: Write back
Block size: 32 bytes
Replacement policy: Clock LRU (requires one bit
per data block)

Caches – Solution 1

Number of blocks = 1MB / 32 bytes = 32 Kblocks
(215)

Number of sets = 32Kblocks / 8 ways = 4 Ksets (212)
12 bits of index

Bits per set = 8 * (8 * 32 + (32 – 12 – 5) + 1 + 1 + 1)
32bytes + tag bits + valid + LRU + dirty

Bits total = (Bits per set) * (# Sets) = 212 * 2192 =
8,978,432 bits

Caches – Exercise 2

Given the following cache and access pattern,
classify each access as hit, compulsory miss,
conflict miss, or capacity miss:

Cache:
Word addressed
2 words/block
8 blocks
2-way set associative
LRU replacement

Access Pattern (word addresses):
3, 10, 15, 0, 5, 1, 9, 4, 10, 16, 0, 3

12

Caches – Solution 2

3 (comp, s1, w0), 10 (comp, s1, w1),
15 (comp, s3, w0), 0 (comp, s0, w0),
5 (comp, s2, w0), 1 (hit),
9 (comp, s0, w1), 4 (hit),
10 (hit), 16 (conf, s0, w0),
0 (conf, s0, w1), 3 (hit)

Topics Since Midterm

• Digital Logic
– Verilog
– State Machines

• CPU Design
• Pipelining
• Caches
• Virtual Memory
• I/O and Performance

Virtual Memory

• Caching works well – why not extend the
basic concept to another level?

• We can make the CPU think it has a
much larger memory than it actually does
by “swapping” things in and out to disk

• While we’re doing this, we might as well
go ahead and separate the physical
address space and the virtual address
space for protection and isolation

VM – Virtual Address

• Address space broken into fixed-
sized pages

• Two fields in a virtual address
– VPN
– Offset

• Size of offset = log2(size of page)

VM – Address Translation

• VPN used to index into page table and
get Page Table Entry (PTE)

• PTE is located by indexing off of the
Page Table Base Register, which is
changed on context switches

• PTE contains valid bit, Physical Page
Number (PPN), access rights

VM – Translation Look-Aside Buffer (TLB)

• VM provides a lot of nice features, but
requires several memory accesses for its
indirection – this really kills
performance

• The solution? Another level of
indirection: the TLB

• Very small fully associative cache
containing the most recently used
mappings from VPN to PPN

13

VM – Exercise

Given a processor with the following
parameters, how many bytes would be
required to hold the entire page table in
memory?

• Addresses: 32-bits
• Page Size: 4KB
• Access modes: RO, RW
• Write policy: Write back
• Replacement: Clock LRU (needs 1-bit)

VM – Solution

Number of bits page offset = 12 bits

Number of bits VPN/PPN = 20 bits

Number of pages in address space
= 232 bytes/212 bytes = 220 = 1Mpages

Size of PTE = 20 + 1 + 1 + 1 = 23 bits

Size of PT = 220 * 23 bits = 24,117,248 bits
= 3,014,656 bytes

The Big Picture
CPU – TLB – Cache – Memory – VM

Processor

TLB
Lookup Cache Main

Memory

VA miss

hit

data

Trans-
lation

miss

Big Picture – Exercise

What happens in the following
cases?

• TLB Miss
• Page Table Entry Valid Bit 0
• Page Table Entry Valid Bit 1
• TLB Hit
• Cache Miss
• Cache Hit

Big Picture – Solution

• TLB Miss – Go to the page table to fill in the
TLB. Retry instruction.

• Page Table Entry Valid Bit 0 / Miss – Page not
in memory. Fetch from backing store. (Page
Fault)

• Page Table Entry Valid Bit 1 / Hit – Page in
memory. Fill in TLB. Retry instruction.

• TLB Hit – Use PPN to check cache.
• Cache Miss – Use PPN to retrieve data from

main memory. Fill in cache. Retry instruction.
• Cache Hit – Data successfully retrieved.

• Important thing to note: Data is always
retrieved from the cache.

Topics Since Midterm

• Digital Logic
– Verilog
– State Machines

• CPU Design
• Pipelining
• Caches
• Virtual Memory
• I/O and Performance

14

IO and Performance

• IO Devices
• Polling
• Interrupts
• Networks

I/O Device Examples and Speeds
• I/O Speed: bytes transferred per second

(from mouse to Gigabit LAN: 100-million-to-1)
• Device Behavior Partner Data Rate

(KBytes/s)
Keyboard Input Human 0.01
Mouse Input Human 0.02
Voice output Output Human 5.00
Floppy disk Storage Machine 50.00
Laser Printer Output Human 100.00
Magnetic Disk Storage Machine 10,000.00
Wireless Network I or O Machine 10,000.00
Graphics Display Output Human 30,000.00
Wired LAN Network I or O Machine 1,000,000.00

When discussing transfer rates, use 10x

IO – Problems Created by Device Speeds

• CPU runs far faster than even the
fastest of IO devices

• CPU runs many orders of magnitude
faster than the slowest of currently
used IO devices

• Solved by adhering to well defined
conventions
– Control Registers

IO – Device Communication

• Some processors handle IO via special
instructions. This is called Programmed IO

• MIPS (and many other platforms) use
variations on Memory Mapped IO where
writing to or reading from certain portions of
the address space actual communicates with
the IO device.

• SPIM fakes this communication by using 4
special device registers

CS61C L39 I/O (83) Garcia, Fall 2004 © UCB

SPIM I/O Simulation
• SPIM simulates 1 I/O device: memory-

mapped terminal (keyboard + display)
• Read from keyboard (receiver); 2 device regs
• Writes to terminal (transmitter); 2 device regs

Received
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

R
eady

(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

R
eady

(I.E.)Unused (00...00)

Unused

IO – Polling

• CPU continuously checks the device’s
control registers to see if it needs to
take any action

• Extremely easy to program
• Extremely inefficient. The CPU

spends potentially huge amounts of
times polling IO devices.

15

IO – Interrupts

• Asynchronous notification to the
CPU that there is something to be
dealt with for an IO device

• Not associated with any particular
instruction – this implies that the
interrupt must carry some
information with it

• Causes the processor to stop what it
was doing and execute some other
code

IO – Types of Interrupts

– Exception: A signal marking that
something strange has happened. This
is usually the direct result of an
instruction (i.e. an overflow exception)

– Interrupt: An asynchronous signal that
some wants the attention of the CPU,
interrupts the CPU in the middle of
what it is doing (i.e. a device interrupt)

– Trap: A synchronous exception that is
explicitly called for by the programmer
to force the processor to do something
(i.e. a kernel trap)

IO – Interrupts for Device IO

• Device raises a flag in the processor –
usually called an interrupt line
– When this line is asserted the processor jumps

to a specific location
• This location is an entry point to the

Interrupt Service Routine (ISR)
• ISR uses the information that is available

about which device raised the interrupt
flag to jump to the proper device routine

• Device routine deals with whatever
caused the IO Device to generate the
interrupt

CS61C L39 I/O : Networks (88) Garcia, Fall 2004 © UCB

Shared vs. Switched Based Networks

• Shared Media vs.
Switched: in switched,
pairs (“point-to-point”
connections)
communicate at same
time; shared 1 at a time

• Aggregate bandwidth
(BW) in switched
network is
many times shared:

• point-to-point faster
since no arbitration,
simpler interface

Node Node Node

Shared

Crossbar
Switch

Node

Node

Node

Node

Networks – Props To Kansas City: Sprint Headquarters Networks – Protocols

• A protocol establishes a logical
format and API for communication

• Actual work is done by a layer
beneath the protocol, so as to protect
the abstraction

• Allows for encapsulation – carry
higher level information within lower
level “envelope”

• Fragmentation – packets can be
broken in to smaller units and later
reassembled

16

Networks – TCP in 20 seconds

• TCP guarantees in-order delivery of
complete packets

• Accomplishes this by keeping a lot of extra
data around in case it needs to be resent

• Sender holds on to old data and retries the
transmission if it does not get an ACK back
from receiver within a time limit

• TCP Packets look like this: (kinda)

Header Payload

Checksum

Trailer
CMD/ Address /DataNet ID Net ID Len ACK

INFO

Networks – Alright, I Know You’re Curious…

Networks – Complications

• Packet headers eat in to your total
bandwidth

• Software overhead for transmission
limits your effective bandwidth
significantly

Networks – Exercise

What percentage of your total bandwidth is
being used for protocol overhead in this
example:

•Application sends 1MB of true data

•TCP has a segment size of 64KB and adds a
20B header to each packet

•IP adds a 20B header to each packet

•Ethernet breaks data into 1500B packets and
adds 24B worth of header and trailer

Networks – Solution

1MB / 64K = 16 TCP Packets
16 TCP Packets = 16 IP Packets
64K/1500B = 44 Ethernet packets per TCP Packet
16 TCP Packets * 44 = 704 Ethernet packets
20B overhead per TCP packet + 20B overhead

per IP packet + 24B overhead per Ethernet
packet =

20B * 16 + 20B * 16 + 24B * 704 = 17,536B of
overhead

We send a total of 1,066,112B of data. Of that,
1.64% is protocol overhead.

CS61C L40 I/O: Disks (96) Garcia, Fall 2004 © UCB

Magnetic Disks

• Purpose:
• Long-term, nonvolatile, inexpensive
storage for files

• Large, inexpensive, slow level in the
memory hierarchy (discuss later)

Processor
(active)

Computer

Control
(“brain”)
Datapath
(“brawn”)

Memory
(passive)
(where
programs,
data live
when
running)

Devices
Input

Output

Keyboard,
Mouse

Display,
Printer

Disk,
Network

17

CS61C L40 I/O: Disks (97) Garcia, Fall 2004 © UCB

Disk Device Terminology

• Several platters, with information recorded
magnetically on both surfaces (usually)

• Actuator moves head (end of arm) over track
(“seek”), wait for sector rotate under head, then
read or write

• Bits recorded in tracks, which in turn divided into
sectors (e.g., 512 Bytes)

Platter

Outer
Track

Inner
TrackSector

Actuator

HeadArm

CS61C L40 I/O: Disks (98) Garcia, Fall 2004 © UCB

Disk Performance Model /Trends
• Capacity : + 100% / year (2X / 1.0 yrs)

Over time, grown so fast that # of platters has reduced
(some even use only 1 now!)

• Transfer rate (BW) : + 40%/yr (2X / 2 yrs)
• Rotation+Seek time : – 8%/yr (1/2 in 10 yrs)
• Areal Density

• Bits recorded along a track: Bits/Inch (BPI)
• # of tracks per surface: Tracks/Inch (TPI)
• We care about bit density per unit area Bits/Inch2

• Called Areal Density = BPI x TPI

• MB/$: > 100%/year (2X / 1.0 yrs)
• Fewer chips + areal density

Disks – RAID
• Idea was to use small, relatively

inexpensive disks in place of large,
very expensive disks to reduce cost
and increase Mean Time to Failure

• Some RAID models are more
successful than others

• We are not going to go over them
today, since we just learned this last
week.

• That being said, make sure you know
them!

Performance -- Metrics

• Best overall raw computational
power

• Least Cost
• Best power / Cost
• Response Time?
• Throughput?

Benchmarks help quantify these ideas.

That Was A LOT of Slides!

• Stick around if you have any more
questions

• See you at the final, this Tuesday
12/14 from 12:30 to 3:30 at 230
Hearst Gym (and if that isn’t
confusing, I don’t know what is)

• Don’t forget to review stuff from
before the midterm!

• STUDY!!!

