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CS61c – Final Review
Fall 2004

Andy Carle
12/12/2004

Topics Before Midterm

• C & Malloc
• Memory Management
• MIPS
• Number Representation
• Floating Point
• CAL

Topics Since Midterm

• Digital Logic
– Verilog
– State Machines

• CPU Design
• Pipelining
• Caches
• Virtual Memory
• I/O and Performance

Today’s Focus

• Focus on material from after the 
midterm.  Don’t forget to go back and 
look over the old review session and 
your midterm

• More emphasis on material that we 
covered just after the midterm, less on 
stuff from the past few weeks.
– Lots of stuff on digital logic
– Like one slide on performance

• My intent is to help you “page in” (no 
replacement policy, please) material 
from the second half of the course that 
you may have long since forgotten

Topics Since Midterm

• Digital Logic
– Verilog
– State Machines

• CPU Design
• Pipelining
• Caches
• Virtual Memory
• I/O and Performance

Digital Logic (and such)

• Truth Tables
• Boolean Algebra
• Canonical SOP
• Combinational Logic
• State Machines
• Timing Diagrams & Tables
• Programmable Logic Arrays
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Digital Logic – Truth Tables

• A table describing the output of 
a function for every possible 
input

• Usually done bitwise when 
dealing with digital logic

• 2n entries (each input can have 
two possible states)

Digital Logic – Boolean Operators

B A AND OR NAND  NOR  XOR XNOR NOT
0 0  0  0   1     1    0   1    1
0 1  0  1   1     0    1   0    0
1 0  1  1   0     0    1   0    
1 1  1  1   0     0    0   1    

AB  A+B (AB)’ (A+B)’ A⊕B   A≡B    A’

Digital Logic – Boolean Algebra

• An algebraic expression using Boolean 
operators
– e.g. AB + A’B + A(B+C’)

• Similar laws to normal algebra
– Distributive: AB + A’B + AB + AC’
– Idempotent:  AB + A’B + AC’
– Complementarity:  B + AC’

Digital Logic – Boolean Algebra Laws

Digital Logic – Boolean Algebra

Minimize the following using Boolean 
Algebra simplification rules:

What does this function do?

(( ) ) ( )s a ab b a b= + + + +(( ) ) ( )s a ab b a b= + + + +

(( ) ) ( )s a ab b a b= + + + +

Digital Logic – Boolean Algebra Solution

Simplifies to:

s ab ab= +
This is an XOR
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Digital Logic – Canonical SOP Form

• Standardized form to describe a truth 
table uniquely

• For every 1 in the output column of 
the Truth Table have a term in the 
SOP

• Put every input variable in every term, 
with the ones that were 0 for that entry 
in the TT negated

Digital Logic – Combinational Logic

• Built from Boolean Algebra 
operators turned in to gates

• Output is purely a function of 
current input

• Therefore, can not have memory or 
remember state

• However, this is perfect for 
describing a truth table as we have 
seen it so far!

Digital Logic – Sequential Logic & State

• To implement many practical circuits 
we need some form of “memory”.

• Registers (created from Flip Flops) are 
our statefull circuit elements.

• Adding state to a circuit introduces a 
notion of time centered around a clock
– Complicates Truth Table
– Necessitates Timing Diagrams

Digital Logic – Timing

Digital Logic – Finite State Machines

• An abstraction of any system with a 
finite number of states and logical 
transitions between them

• Useful when trying to come up with 
the truth table for a problem

• States in a FSM are represented by 
data stored in registers

Digital Logic – Putting It All Together

Exercise
Come up with the FSM, Truth Table 
(NS/Output), Canonical SOP form, 
Simplified Boolean Equation, and 
circuit diagram for this function over 
a continuous bit stream:

Output 1 if the input was a 0.  Output 0 
if the input was a 1.  Unless it was 
the 3rd 1 in a row, in which case you 
output 1 (and start over counting 1s.



4

FSM Solution – Created At Review Solution

• MSB(NS) = S1’ * S0 * n

• LSB(NS) = S1’ * S0’ * n

• OUT = S1’ * n’ + S1 * S0’

Digital Logic – Verilog

• Hardware Description Language
• Verilog description is a collection of 

interconnected modules
• All modules work in parallel
• Structural vs. Behavioral

Digital Logic – Verilog

Exercise
Implement the following circuit in both 
structural and behavioral Verilog:

Digital Logic – Verilog

Behavioral

module pri_enc(in0, in1, in2, e0, e1);
input in0, in1, in2;
output e0, e1;
assign e0 = (~in1 & in0) | in2;
assign e1 = in1 | in2;

endmodule;

Digital Logic – Verilog

Structural

module pri_enc(in0, in1, in2, e0, e1);
input in0, in1, in2;
output e0, e1;
wire notIn1, and01;
not(in1, notIn1);
and(notIn1, in0, and01);
or(and01, in2, e0);
or(in1, in2, e1);

endmodule;



5

Digital Logic – Programmable Logic Arrays

• Creating customized hardware is 
expensive

• We would like to be able to pre-
fabricate a circuit and then allow it to 
be programmed by the developer

• PLAs are the answer!
• Review how to program one on your 

own

Topics Since Midterm

• Digital Logic
– Verilog
– State Machines

• CPU Design
• Pipelining
• Caches
• Virtual Memory
• I/O and Performance

Single Cycle CPU Design

• Overview Picture
• Two Major Issues

– Datapath
– Control

• Control is the hard part, but is make 
easier by the format of MIPS 
instructions

Single-Cycle CPU Design

Data
Out

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
L

U

Clk

Data 
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

32

32
3232
A

B

N
ex

t A
dd

re
ss

Control

Datapath

Control Signals Conditions
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• 1. Analyze instruction set architecture (ISA) => 
datapath requirements
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clocking methodology
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• 4. Analyze implementation of each instruction to 

determine setting of control points.
• 5. Assemble the control logic
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CPU Design – Components of the Datapath

• Memory (MEM)
– instructions & data

• Registers (R: 32 x 32)
– read RS
– read RT
– Write RT or RD

• PC
• Extender (sign extend)
• ALU  (Add and Sub register or extended 

immediate)
• Add 4 or extended immediate to PC

CPU Design – Control Signals

• Branch: 1 for branch, 0 for other
• ALU control
• MemWrite, MemRead(=MemtoReg): 1 if writing 

to/reading from memory, 0 if not
• ALUSrc: choice of ALU input; 1 for immed, 0 for 

reg
• RegWrite: 1 if writing a reg, 0 if not
• RegDst: 1 if output reg is specified in bits 15-11 

(R-fmt), 0 if output reg is in bits 20-16 (I-fmt)
• MemtoReg: 1 if writing reg from memory, 0 if 

writing reg from ALU
• PCSrc: 1 for branch address, 0 for PC+4

CPU Design – Instruction Implementation

• Instructions supported (for our 
sample processor):
– lw, sw
– beq
– R-format (add, sub, and, or, slt)
– corresponding I-format (addi …)

• You should be able to,
– given instructions, write control signals
– given control signals, write 

corresponding instructions in MIPS 
assembly

What Does An ADD Look Like?
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How About ADDI?
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Addi

32

ALUctr = Add

Clk

busW

RegWr = 1

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst = 0

E
xtender

M
ux

Mux

3216imm16

ALUSrc = 1

M
ux

MemtoReg = 0

Clk

Data In
WrEn

32
Adr

Data
Memory

32

MemWr = 0

A
L

U

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>
• R[rt]  =  R[rs]  +  SignExt[Imm16]

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

op rs rt immediate
016212631

PCSrc= 0

One More:  lw
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A Summary of the Control Signals (1/2)
inst Register Transfer

ADD R[rd] <– R[rs] + R[rt]; PC <– PC + 4

ALUsrc = RegB, ALUctr = “add”, RegDst = rd, RegWr, nPC_sel = “+4”

SUB R[rd] <– R[rs] – R[rt]; PC <– PC + 4

ALUsrc = RegB, ALUctr = “sub”, RegDst = rd, RegWr, nPC_sel = “+4”

ORi R[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4

ALUsrc = Im, Extop = “Z”, ALUctr = “or”, RegDst = rt, RegWr, nPC_sel =“+4”

LOAD R[rt] <– MEM[ R[rs] + sign_ext(Imm16)]; PC <– PC + 4

ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, 
MemtoReg, RegDst = rt, RegWr, nPC_sel = “+4”

STORE MEM[ R[rs] + sign_ext(Imm16)] <– R[rs]; PC <– PC + 4

ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemWr, nPC_sel = “+4”

BEQ if ( R[rs] == R[rt] ) then PC <– PC + sign_ext(Imm16)] || 00 else PC <– PC + 4

nPC_sel = “Br”,  ALUctr = “sub”

A Summary of the Control Signals (2/2)
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CPU Design – Designing the Control

• ISA design 
– Instruction formats
– opcode/funct assignment

• Truth table
• Logic expressions of control signals
• Simplified logic expressions

• Similar instructions producing similar 
control signals should have similar 
opcode/funct code
– Add(funct=32) / Addu(funct=33)

BREAK!

Topics Since Midterm

• Digital Logic
– Verilog
– State Machines

• CPU Design
• Pipelining
• Caches
• Virtual Memory
• I/O and Performance

Pipelining

• View the processing of an 
instruction as a sequence of 
potentially independent steps

• Use this separation of stages to 
optimize your CPU by starting to 
process the next instruction while 
still working on the previous one

• In the real world, you have to deal 
with some interference between 
instructions

Review Datapath
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Pipelined Laundry

• Pipelined laundry takes 
3.5 hours for 4 loads!
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Pipelining -- Key Points

• Pipelining doesn’t help latency of 
single task, it helps throughput of 
entire workload

• Multiple tasks operating 
simultaneously using different 
resources

• Potential speedup = Number pipe 
stages

• Time to “fill” pipeline and time to 
“drain” it reduces speedup

Pipelining -- Limitations

• Pipeline rate limited by slowest
pipeline stage

• Unbalanced lengths of pipe 
stages also reduces speedup

• Interference between 
instructions – called a hazard

Pipelining -- Hazards

• Hazards prevent next instruction 
from executing during its designated 
clock cycle
– Structural hazards: HW cannot support 

this combination of instructions (single 
person to fold and put clothes away)

– Control hazards: Pipelining of branches 
& other instructions stall the pipeline 
until the hazard; “bubbles” in the 
pipeline

– Data hazards: Instruction depends on 
result of prior instruction still in the 
pipeline (missing sock)

Pipelining – Structural Hazards

• Avoid memory hazards by having 
two L1 caches – one for data and 
one for instructions

• Avoid register conflicts by always 
writing in the first half of the clock 
cycle and reading in the second 
half
– This is ok because registers are much 

faster than the critical path

Pipelining – Control Hazards

• Occurs on a branch or jump instruction
• Optimally you would always branch 

when needed, never execute 
instructions you shouldn’t have, and 
always have a full pipeline
– This generally isn’t possible

• Do the best we can
– Optimize to 1 problem instruction
– Stall
– Branch Delay Slot
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Pipelining – Data Hazards

• Occur when one instruction is 
dependant on the results of an 
earlier instruction

• Can be solved by forwarding 
for all cases except a load 
immediately followed by a 
dependant instruction
– In this case we detect the problem 

and stall (for lack of a better plan)

Pipelining -- Exercise

Assuming one instruction executed per clock 
cycle, delayed branch, forwarding, interlock on 
load hazards, and a full pipeline:  how many 
cycles will this code take?  Where is there 
forwarding?

Loop: lw, $t0, 0($s1)

addu, $t0, $t0, $s2

sw, $t0, 0($s1)

addiu, $s1, $s1, -4

bne, $s1, $zero, Loop

addu $s3, $t1, $t1

Topics Since Midterm

• Digital Logic
– Verilog
– State Machines

• CPU Design
• Pipelining
• Caches
• Virtual Memory
• I/O and Performance

Caches

• The Problem:  Memory is slow 
compared to the CPU

• The Solution:  Create a fast layer in 
between the CPU and memory that 
holds a subset of what is stored in 
memory

• We call this creature a Cache

Caches – Reference Patterns

• Holding an arbitrary subset of memory in 
a faster layer should not provide any 
performance increase
– Therefore we must carefully choose what to 

put there
• Temporal Locality:  When a piece of data 

is referenced once it is likely to be 
referenced again soon

• Spatial Locality:  When a piece of data is 
referenced it is likely that the data near it 
in the address space will be referenced 
soon

Caches – Format & Mapping

oooooo(lsb)iiiiiiiiiiiii(msb)tttttttttttttttttttt
OffsetIndexTag

•Tag:  Unique identifier for each block in 
memory that maps to same index in cache
•Index:  Which “row” in the cache the data 
block will map to (for direct mapped cache 
each row is a single cache block)
•Block Offset:  Byte offset within the block 
for the particular word or byte you want to 
access
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Caches – Direct Mapped

• Cache Location 0 can be 
occupied by data from:
– Memory location 0, 4, 8, ... 
– 4 blocks => any memory location 

that is multiple of 4

Memory
Memory 
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4  Byte Direct 
Mapped Cache

Cache 
Index

0
1
2
3

Caching – Associative

Here’s a 
simple 2-
way set 
associative 
cache.
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Caches -- Block Size Tradeoff
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Caches – Exercise 1

How many bits would be required to implement 
the following cache?

Size: 1MB
Associativity: 8-way set associative
Write policy: Write back
Block size: 32 bytes
Replacement policy: Clock LRU (requires one bit 
per data block)

Caches – Solution 1

Number of blocks = 1MB / 32 bytes = 32 Kblocks
(215)

Number of sets = 32Kblocks / 8 ways = 4 Ksets (212) 
12 bits of index

Bits per set = 8 * (8 * 32 + (32 – 12 – 5) + 1 + 1 + 1) 
32bytes + tag bits + valid + LRU + dirty

Bits total = (Bits per set) * (# Sets) = 212 * 2192 = 
8,978,432 bits

Caches – Exercise 2

Given the following cache and access pattern, 
classify each access as hit, compulsory miss, 
conflict miss, or capacity miss: 

Cache:
Word addressed
2 words/block
8 blocks
2-way set associative
LRU replacement 

Access Pattern (word addresses):
3, 10, 15, 0, 5, 1, 9, 4, 10, 16, 0, 3
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Caches – Solution 2

3 (comp, s1, w0), 10 (comp, s1, w1),
15 (comp, s3, w0), 0 (comp, s0, w0), 
5 (comp, s2, w0), 1 (hit), 
9 (comp, s0, w1), 4 (hit), 
10 (hit), 16 (conf, s0, w0), 
0 (conf, s0, w1), 3 (hit)

Topics Since Midterm

• Digital Logic
– Verilog
– State Machines

• CPU Design
• Pipelining
• Caches
• Virtual Memory
• I/O and Performance

Virtual Memory

• Caching works well – why not extend the 
basic concept to another level?

• We can make the CPU think it has a 
much larger memory than it actually does 
by “swapping” things in and out to disk

• While we’re doing this, we might as well 
go ahead and separate the physical 
address space and the virtual address 
space for protection and isolation

VM – Virtual Address

• Address space broken into fixed-
sized pages

• Two fields in a virtual address
– VPN
– Offset

• Size of offset = log2(size of page)

VM – Address Translation

• VPN used to index into page table and 
get Page Table Entry (PTE)

• PTE is located by indexing off of the 
Page Table Base Register, which is 
changed on context switches

• PTE contains valid bit, Physical Page 
Number (PPN), access rights

VM – Translation Look-Aside Buffer (TLB)

• VM provides a lot of nice features, but 
requires several memory accesses for its 
indirection – this really kills 
performance

• The solution?  Another level of 
indirection:  the TLB

• Very small fully associative cache 
containing the most recently used 
mappings from VPN to PPN
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VM – Exercise 

Given a processor with the following 
parameters, how many bytes would be 
required to hold the entire page table in 
memory?

• Addresses: 32-bits
• Page Size: 4KB
• Access modes: RO, RW
• Write policy: Write back
• Replacement: Clock LRU (needs 1-bit) 

VM – Solution 

Number of bits page offset = 12 bits

Number of bits VPN/PPN = 20 bits

Number of pages in address space
= 232 bytes/212 bytes = 220 = 1Mpages

Size of PTE = 20 + 1 + 1 + 1 = 23 bits

Size of PT = 220 * 23 bits = 24,117,248 bits 
= 3,014,656 bytes

The Big Picture
CPU – TLB – Cache – Memory – VM 

Processor

TLB
Lookup Cache Main

Memory

VA miss

hit

data

Trans-
lation

miss

Big Picture – Exercise

What happens in the following 
cases?

• TLB Miss
• Page Table Entry Valid Bit 0
• Page Table Entry Valid Bit 1
• TLB Hit
• Cache Miss
• Cache Hit

Big Picture – Solution 

• TLB Miss – Go to the page table to fill in the 
TLB.  Retry instruction.

• Page Table Entry Valid Bit 0 / Miss – Page not 
in memory.  Fetch from backing store. (Page 
Fault)

• Page Table Entry Valid Bit 1 / Hit – Page in 
memory. Fill in TLB.  Retry instruction.

• TLB Hit – Use PPN to check cache.
• Cache Miss – Use PPN to retrieve data from 

main memory.  Fill in cache.  Retry instruction.
• Cache Hit – Data successfully retrieved.

• Important thing to note:  Data is always 
retrieved from the cache.

Topics Since Midterm

• Digital Logic
– Verilog
– State Machines

• CPU Design
• Pipelining
• Caches
• Virtual Memory
• I/O and Performance
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IO and Performance

• IO Devices
• Polling
• Interrupts
• Networks

I/O Device Examples and Speeds
• I/O Speed: bytes transferred per second

(from mouse to Gigabit LAN: 100-million-to-1) 
• Device Behavior Partner Data Rate 

(KBytes/s)
Keyboard Input Human 0.01
Mouse Input Human 0.02
Voice output Output Human 5.00
Floppy disk Storage Machine 50.00
Laser Printer Output Human 100.00
Magnetic Disk Storage Machine 10,000.00
Wireless Network I or O Machine 10,000.00
Graphics Display Output Human 30,000.00
Wired LAN Network I or O Machine 1,000,000.00

When discussing transfer rates, use 10x

IO – Problems Created by Device Speeds

• CPU runs far faster than even the 
fastest of IO devices

• CPU runs many orders of magnitude 
faster than the slowest of currently 
used IO devices

• Solved by adhering to well defined 
conventions
– Control Registers

IO – Device Communication

• Some processors handle IO via special 
instructions.  This is called Programmed IO

• MIPS (and many other platforms) use 
variations on Memory Mapped IO where 
writing to or reading from certain portions of 
the address space actual communicates with 
the IO device.

• SPIM fakes this communication by using 4 
special device registers

CS61C L39 I/O (83) Garcia, Fall 2004 © UCB

SPIM I/O Simulation
• SPIM simulates 1 I/O device: memory-

mapped terminal (keyboard + display)
• Read from keyboard (receiver); 2 device regs
• Writes to terminal (transmitter); 2 device regs

Received 
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

R
eady

(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

R
eady

(I.E.)Unused (00...00)

Unused

IO – Polling 

• CPU continuously checks the device’s 
control registers to see if it needs to 
take any action

• Extremely easy to program
• Extremely inefficient.  The CPU 

spends potentially huge amounts of 
times polling IO devices.
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IO – Interrupts 

• Asynchronous notification to the 
CPU that there is something to be 
dealt with for an IO device

• Not associated with any particular 
instruction – this implies that the 
interrupt must carry some 
information with it

• Causes the processor to stop what it 
was doing and execute some other 
code

IO – Types of Interrupts

– Exception: A signal marking that 
something strange has happened.  This 
is usually the direct result of an 
instruction (i.e. an overflow exception)

– Interrupt: An asynchronous signal that 
some wants the attention of the CPU, 
interrupts the CPU in the middle of 
what it is doing (i.e. a device interrupt)

– Trap: A synchronous exception that is 
explicitly called for by the programmer 
to force the processor to do something 
(i.e. a kernel trap)

IO – Interrupts for Device IO

• Device raises a flag in the processor –
usually called an interrupt line
– When this line is asserted the processor jumps 

to a specific location
• This location is an entry point to the 

Interrupt Service Routine (ISR) 
• ISR uses the information that is available 

about which device raised the interrupt 
flag to jump to the proper device routine

• Device routine deals with whatever 
caused the IO Device to generate the 
interrupt

CS61C L39 I/O : Networks (88) Garcia, Fall 2004 © UCB

Shared vs. Switched Based Networks

• Shared Media vs. 
Switched: in switched, 
pairs (“point-to-point” 
connections) 
communicate at same 
time; shared 1 at a time

• Aggregate bandwidth 
(BW) in switched 
network is
many times shared:

• point-to-point faster 
since no arbitration, 
simpler interface

Node Node Node

Shared

Crossbar
Switch

Node

Node

Node

Node

Networks – Props To Kansas City: Sprint Headquarters Networks – Protocols 

• A protocol establishes a logical 
format and API for communication

• Actual work is done by a layer 
beneath the protocol, so as to protect 
the abstraction

• Allows for encapsulation – carry 
higher level information within lower 
level “envelope”

• Fragmentation – packets can be 
broken in to smaller units and later 
reassembled
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Networks – TCP in 20 seconds

• TCP guarantees in-order delivery of 
complete packets

• Accomplishes this by keeping a lot of extra 
data around in case it needs to be resent

• Sender holds on to old data and retries the 
transmission if it does not get an ACK back 
from receiver within a time limit

• TCP Packets look like this:  (kinda)

Header Payload

Checksum

Trailer
CMD/ Address /DataNet ID Net ID Len ACK

INFO

Networks – Alright, I Know You’re Curious…

Networks – Complications 

• Packet headers eat in to your total 
bandwidth

• Software overhead for transmission 
limits your effective bandwidth 
significantly

Networks – Exercise 

What percentage of your total bandwidth is 
being used for protocol overhead in this 
example:

•Application sends 1MB of true data

•TCP has a segment size of 64KB and adds a 
20B header to each packet

•IP adds a 20B header to each packet

•Ethernet breaks data into 1500B packets and 
adds 24B worth of header and trailer

Networks – Solution 

1MB / 64K = 16 TCP Packets
16 TCP Packets = 16 IP Packets
64K/1500B = 44 Ethernet packets per TCP Packet
16 TCP Packets * 44 = 704 Ethernet packets
20B overhead per TCP packet + 20B overhead 

per IP packet + 24B overhead per Ethernet 
packet =

20B * 16 + 20B * 16 + 24B * 704 = 17,536B of 
overhead

We send a total of 1,066,112B of data.  Of that, 
1.64% is protocol overhead.

CS61C L40 I/O: Disks (96) Garcia, Fall 2004 © UCB

Magnetic Disks

• Purpose:
• Long-term, nonvolatile, inexpensive 
storage for files

• Large, inexpensive, slow level in the 
memory hierarchy (discuss later)

Processor
(active)

Computer

Control
(“brain”)
Datapath
(“brawn”)

Memory
(passive)
(where 
programs, 
data live 
when
running)

Devices
Input

Output

Keyboard, 
Mouse

Display, 
Printer

Disk,
Network
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CS61C L40 I/O: Disks (97) Garcia, Fall 2004 © UCB

Disk Device Terminology

• Several platters, with information recorded 
magnetically on both surfaces (usually)

• Actuator moves head (end of arm) over track 
(“seek”), wait for sector rotate under head, then 
read or write

• Bits recorded in tracks, which in turn divided into 
sectors (e.g., 512 Bytes)

Platter

Outer
Track

Inner
TrackSector

Actuator

HeadArm

CS61C L40 I/O: Disks (98) Garcia, Fall 2004 © UCB

Disk Performance Model /Trends
• Capacity : + 100% / year (2X / 1.0 yrs)

Over time, grown so fast that # of platters has reduced 
(some even use only 1 now!)

• Transfer rate (BW) : + 40%/yr (2X / 2 yrs)
• Rotation+Seek time : – 8%/yr (1/2 in 10 yrs)
• Areal Density

• Bits recorded along a track: Bits/Inch (BPI)
• # of tracks per surface: Tracks/Inch (TPI)
• We care about bit density per unit area Bits/Inch2

• Called Areal Density = BPI x TPI

• MB/$: > 100%/year (2X / 1.0 yrs)
• Fewer chips + areal density

Disks – RAID 
• Idea was to use small, relatively 

inexpensive disks in place of large, 
very expensive disks to reduce cost 
and increase Mean Time to Failure

• Some RAID models are more 
successful than others

• We are not going to go over them 
today, since we just learned this last 
week.  

• That being said, make sure you know 
them!

Performance -- Metrics

• Best overall raw computational 
power

• Least Cost
• Best power / Cost
• Response Time?
• Throughput?

Benchmarks help quantify these ideas.

That Was A LOT of Slides!

• Stick around if you have any more 
questions

• See you at the final, this Tuesday 
12/14 from 12:30 to 3:30 at 230 
Hearst Gym (and if that isn’t 
confusing, I don’t know what is)

• Don’t forget to review stuff from 
before the midterm!

• STUDY!!!


