
CS61C Fall 2012 – 3 – Intro to C: Pointers, Arrays, and Strings

C vs. Java

For many operations, C is similar to Java. However, there are a number of key differences

between the languages:

Pointers

A pointer is a variable that contains the memory address of a variable.

- To declare a pointer, you write:

 <type> *x; or <type>* x; (declares x as a pointer to <type>)

- The dereference operator (*) is used to obtain the value of a pointer:

 y = *x; (assigns the value of x to y).

- The address operator (&) is used to obtain the address of a pointer:

 z = &x; (assigns the address of x to z).

1. What is terrible about the following function?

int *blasphemy(void) {

 int x; return &x;

}

This function returns a pointer to memory that was allocated on the stack, but deallocated

after the function returns. There’s no guarantee that this memory will contain or hold any

particular value, or that things won’t crash when you try to access it.

2. What is wrong about the following function that swaps the values of two int variables?

What changes need to be made for swappy to function correctly?

/* Swaps the values of A and B. */

void swappy(int *a, int *b) {

 int tmp = *a;

 *a = *b;

Java C

Object oriented No objects, inheritance, or polymorphism

“Methods” “Functions”

Class libraries of data structures Lower level libraries

Automatic memory management Manual memory management

Strongly typed Weakly typed (can typecast all types to any

other type)

Compiles to machine independent bytecode Compiles to machine dependent assembly

Initializes variables to default (e.g. 0) Variables start as “garbage”

 Exposes addresses in the form of pointers

CS61C Fall 2012 – 3 – Intro to C: Pointers, Arrays, and Strings

 *b = tmp;

}

Arrays

An array in C is essentially a consecutive chunk of memory.

- To declare an array, you write:

 <type> arr[n]; (declares arr as a n-element array of <type>)

 <type> arr[] = {<v1>, <v2>}; (initializes arr as a 2-element array of

<type>).

- The name of an array is the pointer to the first (0
th

) element of the array:

 *arr = arr[0];

- You can also do pointer arithmetic and access other elements of the array:

 *(arr+i) is equivalent to arr[i], which gives the i
th

 element of arr.

Strings

A string in C is stored as a character array (char[]) that ends with the null terminating

character, ‘\0’ (ASCII=0; this is different from the character zero, ‘0’, whose ASCII=48).

3. Implement the strcpy function. Assume SRC and DST are properly declared.

/* Copies the string SRC to DST. No return value required. */

void strcpy(char* dst, const char* src) {

 // order: assign -> increment -> check while

 while (*dst++ = *src++);

 }

4. (MT1 Sp12 - Graph Representation) A graph is represented as an array of edge_t

pointers terminated by a null pointer. Given the following implementation, draw a

possible pointer diagram starting from G, assuming the graph it points to has exactly two

edges and three vertices.

typedef struct edge {

 vertex_t *first;

 vertex_t *second;

} edge_t;

/* The following pointer to a

graph is declared: */

edge_t** G;

Vertex 1 Vertex 2 Vertex 3

G edge1 edge2 /

first second first second

