## CS61C Fall 2012-4- Everything is a Number!

## Floating Point Numbers (IEEE Standard 754)

Why? We need to represent real numbers!

Single precision FP (32 bit):

| FP value $\left.=(-1)^{\mathrm{S}} \times(\mathbf{1}+\mathrm{F}) \times 2^{(E-\text { bias }}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Sign | Exponent (E) | Fraction (F) / Mantissa |  |
| 31 | 23 |  | 0 |

For single precision FP, $S=1$ bit, $E=8$ bits, $F=23$ bits, bias $=127$.
For double precision FP, $S=1$ bit, $E=11$ bits, $F=52$ bits, bias $=1023$.
Question: Why do we use a bias?
We use bias because we wish to represent both tiny and large real numbers. Subtracting bias from our exponent value will share the range we can represent to both tiny (negative E) and large (positive E) real numbers.
"Special" single precision FP values:
$\pm$ Zero: $\quad \mathrm{E}=0, \mathrm{M}=0$
$\pm$ Infinity: $\quad \mathrm{E}=255, \mathrm{M}=0$
NaN: $\quad \mathrm{E}=255, \mathrm{M} \neq 0$
Denormalized: $\mathrm{E}=0, \mathrm{M} \neq 0$
(More on denormal numbers: http://en.wikipedia.org/wiki/Denormal_number)

Question: Convert the single precision FP representation, 0xC0B40000, to decimal.

$$
\begin{aligned}
& 0 x C 0 B 40000=0 b 1|10000001| 01101000000000000000000 \\
& 0 b 10000001=0 \mathrm{~d} 129--->\mathrm{E}=129-127=2 \\
& -1.01101 \times 2^{2} \\
& =-\left(2^{0}+2^{-2}+2^{-3}+2^{-5}\right) \times 2^{2} \\
& =-\left(2^{2}+2^{0}+2^{-1}+2^{-3}\right) \\
& =-(4+1+0.5+0.125) \\
& =-5.625
\end{aligned}
$$

Now we know how to convert from FP representations to decimals, how about the other way around? Google is always your best friend. For example, try this website:
http://www.cs.cornell.edu/~tomf/notes/cps 104/floating.html\#dec2hex

## CS61C Fall 2012-4- Everything is a Number!

## MIPS Revisited

Since your project 2 is all about MIPS (and so is project 4, the MIPS datapath), we decide to give you a quick taste of how to decode MIPS instructions. Remember, each instruction in MIPS is a number!

Question: Convert "addi \$t1, \$t0, 5" to its HEX representation.
Format: addi $\$ \mathrm{rt}, \$ \mathrm{rs}, \mathrm{imm} \quad-->\quad$ opcode(addi) $=001000, \$ \mathrm{t} 0=01000, \$ \mathrm{t} 1=01001$
0x21090005 or 0b001000 | $01000|01001| 0000000000000101$
Question: Decode the following program and describe its function.

| Memory Address | Instruction |
| :--- | :--- |
| $0 x 00$ | 0x0085402A (0b00000000100001010100000000101010) |
| $0 x 04$ | $0 x 11000002(0 b 00010001000000000000000000000010)$ |
| $0 x 08$ | 0x00A01020 (0b00000000101000000001000000100000) |
| $0 x 0 \mathrm{c}$ | 0x03E00008 (0b000000111110000000000000000001000) |
| $0 \times 10$ | 0x00801020 (0b00000000100000000001000000100000) |
| $0 \times 14$ | $0 x 03 \mathrm{E} 00008(0 \mathrm{~b} 00000011111000000000000000001000)$ |


| Memory Address | Instruction |
| :--- | :--- |
| $0 x 00$ | slt \$t0, \$a0, \$a1 |
| $0 x 04$ | beq \$t0, \$0, 2 |
| $0 x 08$ | add \$v0, \$a1, \$0 |
| $0 x 0 c$ | jr \$ra |
| $0 \times 10$ | add \$v0, \$a0, \$0 |
| $0 x 14$ | jr \$ra |

This function returns the larger number of $\$ \mathrm{a} 0$ and $\$ \mathrm{a} 1$.

