
CS61C Fall 2012 – 8 – Combinational Logic and FSM

1

A

Combinational Logic
OR

A B C

0 0 0
0 1 1
1 0 1
1 1 1

AND

A B C

0 0 0
0 1 0
1 0 0
1 1 1

NOT

A B

0 1
1 0

Using these above gates, create a NOR gate, a NAND gate, an XOR gate, and an XNOR gate.

NOR NAND XOR XNOR

Append NOT Append NOT Logic Gate of Append NOT

After OR After AND A(~B) + (~A)B After XOR

Simplify the following Boolean expressions
(~A)B + AB = (~A + A)B = (1)B = B

A(A+AB)+A(B+~B)+AA = A(A) + A(1) + A = A + A + A = A

(~A)BC + A(~B)C + AB(~C) + ABC = (~A)BC + A(~B)C + AB(~C+C) = (~A)BC + AB + A(~B)C =(~A)BC + A(B + C)
 = (~A)BC + AB + AC = B((~A)C + A) + AC = B(A + C) + AC = AB + AC + BC
One common Boolean operator is the implication operator (A->B, A implies B, or “if A, then B”). One
common function that high-level languages use is the add function. Both can be represented with gates.
For these two operations, create truth tables for the input/output values, create a minimalized Boolean
expression, and lastly create the logic gates to represent them.

Implication

A B C

0 0 1

0 1 1

1 0 0

1 1 1

(~A)(~B) + (~A)B + AB
(~A)(~B) + B
~A + B

Add

X0 X1 X2 Y0 Y1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
(~X0)(~X1)X2+(~X0)X1(~X2)+(X0)(~X1)(~X2)+X0X1X2=Y0
X0(~X1)(~X2) + X0(~X1)X2 + X0X1(~X2) + X0X1X2=Y1
This is one of the operations you need to implement for
Project 4. Please minimize the expression and
implement the gates yourself.

B

CS61C Fall 2012 – 8 – Combinational Logic and FSM

2

Finite State Machines
FSMs can be an incredibly useful computational tool. They have a straightforward implementation in
hardware:

The register holds the current state (encoded as a particular combination of bits), and the combinational
logic block maps from {current state, input} to {next state, output}.

Draw a transition diagram for an FSM that can take in an input one bit at a time, and after each input
received, output is whether the number of 1s is divisible by 3. Then, assign states binary encodings and
complete the truth table for the FSM. Finally, write a simplified Boolean algebra expression that
implements the FSM’s truth table.

The states each correspond to the number of 1s seen so far, mod 3. When this quantity is 0, 1s seen so
far is divisible by 3, and we output 1. Behavior for current state 11 is undefined, since we don’t expect
our machine to ever reach that state. (Read indices as little endian.)
NS[1]: (~CS[1])CS[0]In + CS[1](~CS[0])(~In)
NS[0]: (~CS[1])(~CS[0])In + (~CS[1])CS[0](~In)=(~CS[1])((~CS[0])In + CS[0](~In)) ~= (~CS[1])(CS[0] XOR In)
Out: (~CS[1])(~CS[0])(~In) + CS[1]*(~CS[0])In=(~CS[0])((~CS[1])(~In) + CS[1]In) ~=CS[0]*(CS[1] XNOR In)

cur. state input next state output

 00 0
 00 1
 01 0
 01 1
 10 0
 10 1

 00 1
 01 0
 01 0
 10 0
 10 0
 00 1

