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A B C 

0 0 0 
0 1 1 
1 0 1 
1 1 1 

AND 
 

 
 

 
 

A B C 

0 0 0 
0 1 0 
1 0 0 
1 1 1 

NOT 

A B 

0 1 
1 0 

 
Using these above gates, create a NOR gate, a NAND gate, an XOR gate, and an XNOR gate.  

NOR NAND XOR XNOR 

Append NOT Append NOT Logic Gate of Append NOT 

After OR After AND A(~B) + (~A)B After XOR 

Simplify the following Boolean expressions 
(~A)B + AB = (~A + A)B = (1)B = B 
 
A(A+AB)+A(B+~B)+AA = A(A) + A(1) + A = A + A + A = A 
 
(~A)BC + A(~B)C + AB(~C) + ABC = (~A)BC + A(~B)C + AB(~C+C) = (~A)BC + AB + A(~B)C =(~A)BC + A(B + C) 
 = (~A)BC + AB + AC = B((~A)C + A) + AC = B(A + C) + AC = AB + AC + BC 
One common Boolean operator is the implication operator (A->B, A implies B, or “if A, then B”).  One 
common function that high-level languages use is the add function.  Both can be represented with gates. 
For these two operations, create truth tables for the input/output values, create a minimalized Boolean 
expression, and lastly create the logic gates to represent them. 

 

Implication 

A B C 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

(~A)(~B) + (~A)B + AB 
(~A)(~B) + B 
~A + B 

Add 

X0 X1 X2 Y0 Y1 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 
(~X0)(~X1)X2+(~X0)X1(~X2)+(X0)(~X1)(~X2)+X0X1X2=Y0 
X0(~X1)(~X2) + X0(~X1)X2 + X0X1(~X2) + X0X1X2=Y1 
This is one of the operations you need to implement for 
Project 4. Please minimize the expression and 
implement the gates yourself. 
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Finite State Machines 
FSMs can be an incredibly useful computational tool. They have a straightforward implementation in 
hardware: 
 

 
The register holds the current state (encoded as a particular combination of bits), and the combinational 
logic block maps from {current state, input} to {next state, output}. 

 
Draw a transition diagram for an FSM that can take in an input one bit at a time, and after each input 
received, output is whether the number of 1s is divisible by 3. Then, assign states binary encodings and 
complete the truth table for the FSM. Finally, write a simplified Boolean algebra expression that 
implements the FSM’s truth table. 

 
The states each correspond to the number of 1s seen so far, mod 3. When this quantity is 0, 1s seen so 
far is divisible by 3, and we output 1.  Behavior for current state 11 is undefined, since we don’t expect 
our machine to ever reach that state. (Read indices as little endian.) 
NS[1]: (~CS[1])CS[0]In + CS[1](~CS[0])(~In) 
NS[0]: (~CS[1])(~CS[0])In + (~CS[1])CS[0](~In)=(~CS[1])((~CS[0])In + CS[0](~In)) ~= (~CS[1])(CS[0] XOR In) 
Out:  (~CS[1])(~CS[0])(~In) + CS[1]*(~CS[0])In=(~CS[0])((~CS[1])(~In) + CS[1]In) ~=CS[0]*(CS[1] XNOR In) 

cur. state         input  next state     output 

     00                 0 
     00                 1 
     01                 0 
     01                 1 
     10                 0 
     10                 1 

      00              1 
      01              0 
      01              0 
      10              0 
      10              0 
      00              1 


