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One, two, three… SIMD! – Spring 2011 Final (Katz, Patterson) 

a) SIMDize the following code by filling in the spaces provided.  Assume n is a multiple of 4. 
void count( int n, float *c) { 

for (int i = 0; i < n; i++) 
c[i] = I; 

} 

void countfast( int n, float *c) { 
 float m[4] = {0, 1, 2, 3}; 
 __m128 iterate = _mm_loadu_ps(m); 
 for (int i = 0; i < n/4; i++) { 
  _mm_storeu_ps (c + 4 * i, iterate); 
  iterate = _mm_add_ps (iterate, _mm_set1_ps(4)); 
 } 
} 

b) Homer’s rule is an efficient way to find the value of polynomial p(x) = c0xn-1 + c1xn-2 + … + cn-2x + cn-1: 
float poly( int n, float *c, float x) { 
       float p = 0; 
       for ( int i = 0; i < n; i++){ 
              p = p * x + c[i]; 
       return p; 
} 

float fastpoly( int n, float *c, float x) { 
 _m128 p = _mm_setzero_ps(); 
 for (int i = 0; i < n; i += 4) { 
  p = _mm_mul_ps( p, _mm_set1_ps(x * x * x* x)); 
  p = _mm_add_ps(p, _mm_loadu_ps(c + i)); 
 } 
 float m[4] = {x * x * x, x * x, x, 1}; 
 p = _mm_mul_ps( p, _mm_loadu_ps(m)); 
 _mm_storeu_ps(m, p); 
 return m[0] + m[1] + m[2] + m[3]; 
} 
 

Thread Level Parallelism – Summer 2011 Final (Greenbaum) 
For the following snippets of code below, Circle one of the following to indicate what issue, if any, the 
code will experience. Assume no thread will complete before another thread starts executing.  
Assume arr is an int array with length len.  
 
//Set all elements in arr to 0 
int i; 
#pragma omp parallel for 
for (i = 0; i < len; i++) 
       arr[i] = 0;  

Sometimes  
incorrect 

Always  
incorrect  

Slower than  
serial  

Faster than  
serial  

//Set element i of arr to i 
#pragma omp parallel 
for (int i = 0; i < len; i++) 
       arr[i] = i;  

Sometimes  
incorrect  
 

Always  
incorrect  

Slower than  
serial  

Faster than  
serial  

//Set arr to be an array of Fibonacci numbers. 
arr[0] = 0; 
arr[1] = 1; 
#pragma omp parallel for 
for (int i = 2; i < len; i++) 
       arr[i] = arr[i - 1] + arr[i - 2]; 

Sometimes  
incorrect 

Always  
incorrect  

Slower than  
serial  

Faster than  
serial  
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Verilog and Logic – Spring 2004 Final (Garcia) 
a) We’ve seen 6-input, 1-output logic gates like ANDs, ORs, NORs, NANDs, XORs, XNORs, etc. 
Radio Shack needs one copy of ALL the possible 6-input, 1-output logic gates possible and each costs $1. 
How much does Radio Shack need to spend?  $16E or 16 Exadollars 
 
b)  Given the following sum-of-products expression for Foo, simplify this expression to a sum of 
products of (at most) 3 two-variable terms (e.g., AB + CD + AD): What’s a good name for Foo? 
                _   _    _  _   _    _   _         _       _ 
Foo = A*B*C + A*B*C + A*B*C + A*B*C 
           _    _     _    _    _    _ 
Foo = X * Y + X * Z + Y * Z and is better named “the minority circuit”. 
c)  Given the following simplified sum-of-products expression for Bar, given A, B and C: 
               _                _ 
Bar = A*B + A*C + B*C 
Draw the circuit diagram for the Bar function. You are required to instantiate one 1-bit 
multiplexor, and plug C into its select line (label its 0 and 1 inputs). You may only use basic 
gates AND, OR & NOT. Full credit will only be given to solutions with a mux and 3 basic gates. 
 
notB = Not(B) 
Bar = MUX(C, AND(A,notB), OR(A, notB)) 
 

Pipelining – Spring 2004 Final (Garcia) 
Given the following MIPS code snippet (note that instruction #6 could be anything): 
loop: 
1 addi $t0, $t0, 4 
2 lw $v0, 0($t0) 
3 sw $v0, 20($t0) 
4 lw $s0, 60($t0) 
5 bne $s0, $0, loop 
6 ## The following instruction could be anything! 
a) Detect hazards and insert no-ops to insure correct operation. Assume no delayed branch, no 
forwarding units and no interlocked pipeline stages.  
 
2 between lines 1 and 2, 2 between lines 2 and 3, 2 between lines 4 and 5 
 
b) Rewrite the program to maximize performance. Assume delayed branch and forwarding units, but no 
interlocked pipeline stages. For unknown reasons, the first instruction after the loop label must be the 
addi. Feel free to insert no-ops. You should be able to do it using 6 or only 5 instructions per loop. 
 
loop: 
1 addi $t0, $t0, 4 
2 lw $v0, 0($t0) 
4 lw $s0, 60($t0) 
3 sw $v0, 20($t0) 
5 bne $s0, $0, loop 
6 no-op 

loop: 
1 addi $t0, $t0, 4 
2 lw $v0, 0($t0) 
4 lw $s0, 60($t0) 
6 no-op 
5 bne $s0, $0, loop 
3 sw $v0, 20($t0) 

loop: 
1 addi $t0, $t0, 4 
4 lw $s0, 60($t0) 
2 lw $v0, 0($t0) 
5 bne $s0, $0, loop 
3 sw $v0, 20($t0) 

 


