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Big Idea #1: Levels of Representation/

Interpretation
High Level Language :e[ﬁgif,k[ﬂ']
Program (e.g., C) vik+1] = temp;
Compiler W $t0,0(52)  Anything can be represented
Assembly Language w91, 4(52) as a number,
Program (e.g., MIPS) v gté S:g; i.e., data or instructions

Assembler

0101 1000 0000 1001 1100 0
Machine
Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture

Implementation o) .
&
Logic Circuit Description . ®
.+, (Circuit Schematic Diagrams) o}, &~ ’
ol

110 1010 1111

Agenda

* Review

* Instructions as Numbers
* Administrivia

* Floating Point Numbers
¢ And in Conclusion, ...
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Optimized Function Convention

To reduce expensive loads and stores from spilling
and restoring registers, MIPS divides registers into
two categories:

1. Preserved across function call
— Caller can rely on values being unchanged
— Sra, $sp, $gp, $fp, “saved registers” $s0- $s7

2. Not preserved across function call
— Caller cannot rely on values being unchanged

— Return value registers $v0,$v1, Argument registers
$a0-$a3, “temporary registers” $t0-$t9
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Where is the Stack in Memory?

* MIPS convention

* Stack starts in high memory and grows down
— Hexadecimal (base 16) : 7fff fffc,,

* MIPS programs (text segment) in low end
— 0040 0000, ,,

* static data segment (constants and other static
variables) above text for static variables
— MIPS convention global pointer ($gp) points to static
— (30 of 32, 2 left! — will see when talk about OS)

* Heap above static for data structures that grow and
shrink ; grows up to high addresses
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MIPS Memory Allocation
$sp—=Tfff fffcy,,

Stack

{
f

Dynamic data

$gp—1000 8000, Static data
1000 0000,
Text
pc—0040 0000, .,
Reserved

) 0
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Signed Integers and
Two’s Complement Representation

* Signed integers in C; want % numbers <0, want %
numbers >0, and want one 0

* Two’s complement treats 0 as positive, so 32-bit
word represents 232integers from
-231(-2,147,483,648) to 231-1 (2,147,483,647)
— Note: one negative number with no positive version
— Book lists some other options, all of which are worse
— Every computers uses two’s complement today

* Most significant bit (leftmost) is the sign bit,
since 0 means positive (including 0), 1 means
negative
— Bit 31 is most significant, bit 0 is least significant
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Twos Complement Examples

* Assume for simplicity 4 bit width, -8 to +7
represented

3 0011
+2 0010
5 0101

-3 1101
+(2) 1110 +(2) 1110
1 10001 -511011

-8 1000
+(-1) 1111

Carry into MSB =
+7 10111

Carry Out MSB
nderflom]

3 0011

7 0111
+1 0001
-8 1000
Overflow!

Carry into MSB #
Carry Out MSB

Agenda

¢ Instructions as Numbers
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Everything in a Computer
is Just a Binary Number

¢ Up to program to decide what data means

* Example 32-bit data shown as binary number:
0000 0000 0000 0000 0000 0000 0000 0000
What does it mean if its treated as

Signed integer

Unsigned integer

. (Floating point)

ASCII characters

Unicode characters

. MIPS instruction

two

SuUuswNp
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Implications of Everything is a Number

 Stored program concept
— Invented about 1947 (many claim invention)
* As easy to change programs as to change
data!

* Implications?
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Instructions as Numbers

* Instructions are also kept as binary numbers in
memory
— Stored program concept
— As easy to change programs as it is to change data
* Register names mapped to numbers
* Need to map instruction operation to a part of
number




Names of MIPS fields

| op | rs | rt | rd | shamt | funct |
6 bits Sbits 5bits Sbits S5bits 6 bits
* op: Basic operation of instruction, or opcode

* rs: 15t register source operand

* rt: 2" register source operand.

* rd: register destination operand (result of
operation)

* shamt: Shift amount.

* funct: Function. This field, often called function
code, selects the specific variant of the operation
_in the op field
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Instructions as Numbers

¢ addu $t0, $s1,$s2
— Destination register $t0 is register 8
— Source register $s1 is register 17
— Source register $s2 is register 18
— Add unsigned instruction encoded as number 33
Lo [ 17 [ 18] 8 [ o [ 33 |
['000000 [ 10001 [ 10010 | 01000 [ 00000 | 100001 ]
6 bits Sbhits S5bits S5bits 5bits 6 bits
* Groups of bits call fields (unused field default is 0)
 Layout called instruction format
« Binary version called machine instruction
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Instructions as Numbers

e sll S$zero, $zero,0
— $zerois register 0
— Shift amount 0 is 0
— Shift left logical instruction encoded as number 0
o T e e |
['000000 [ 00000 | 00000 | 00000 [ 00000 [ 000000 |
6 bits Sbits Shbhits 5bits 5bits 6 bits

* Can also represent machine code as base 16 or
base 8 number: 0000 0000,,,, 0000000000,
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What about Load, Store, Immediate,
Branches, Jumps?

* Fields for constants only 5 bits (-16 to +15)
— Too small for many common cases

* #1 Simplicity favors regularity (all instructions
use one format) vs. #3 Make common case fast
(multiple instruction formats)?

* 4t Design Principle: Good design demands good
compromises

* Better to have multiple instruction formats and
keep all MIPS instructions same size
— All MIPS instructions are 32 bits or 4 bytes
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Names of MIPS Fields in I-type

| op | rs | rt | address or constant
6 bits  5bits 5 bits 16 bits
op: Basic operation of instruction, or opcode

rs: 1%t register source operand

rt: 2" register source operand for branches
but register destination operand

for lw, sw, and immediate operations
Address/constant: 16-bit two’s complement
number

— Note: equal in size of rd, shamt, funct fields
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Register (R), Immediate (1), Jump (J)
Instruction Formats

R-type | op | rs | rt | rd | shamt | funct |
6 bits  5bits  5bits 5bits S5hits 6 bits

I-type | op | rs | rt | address or constM
6 bits  5bits 5 bits 16 bits

* Now loads, stores, branches, and immediates
can have 16-bit two’s complement address or
constant: -32,768 (-21%) to +32,767 (21°-1)

* What about jump, jump and link?

J-type | op | address
6 bits 26 bits
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Encoding of MIPS Instructions: Converting C to MIPS Machine code
Must Be Unique! $tO (reg 8), &A in $t1 (reg 9), h=$s2 (reg 18)
ﬂ--- A ot
addu 0 33, ormat:
subu R 0 reg reg reg 0 SoN. n.a. Iw stO,lZOO(stl) _
sltu R 0 reg reg reg 0 43, n.a. addu $t0,552,$t0 ﬁ
sll R 0 reg na reg  constant O, n.a. -
addiunsigned | 9., reg reg n.a. n.a. n.a.  constant sw $t0 1200 $t1) —
Iw (load word) I 35, reg reg n.a. n.a. na.  address For.
sw (store word) | 43, reg reg n.a. n.a. n.a. address .n---
beq 1 4., reg reg na. n.a. na.  address addu 33,
bne 0| S reg reg n.a. n.a. na.  address Iw (load word) | ssten reg reg n.a. n.a. n.a. address
j (jump) J D n.a. n.a. n.a. n.a. n.a. address sw (store word) | 43, reg reg n.a. n.a. n.a. address
jal V1 3 n.a. n.a. n.a. n.a. na.  address R-type op rs rt rd | shamt | funct
jr(umpreg) R 0O reg reg reg 0 8ien n.a. I-type op rs rt address or constant
e Fall 2012 - Lecture #9 19 J-type op address
s14/12 R PR T StudeRt Roulete? 70—
Converting C to MIPS Machine code
$t0 (reg 8), &A in Stl (reg 9), h=5s2 (reg 18) Agenda
A[300] = h + A[300];
Format?
Iw $t0,1200(5t1) |39 |s 1200
addu $t0,5s2,5t0 1 S
210,552,% ﬁ 0 8188 | 0 3 * Administrivia
sw $t0,1200(St1) _ 1200
ln---
addu 33,
Iw (load word) | 35&,‘ reg reg n.a. n.a. n.a. address
sw (store word) | 43, reg reg n.a. n.a. n.a. address
R-type op rs rt rd | shamt | funct
I-type op rs rt address or constant
J-type op address o Fall 2012 - Lecture 19 2
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CS61c in the News CS 61cin the News

030 inch 231 inches
76mm 586 mm * iPhone5,9/12/12 ¢ 1-1.5 Ghz, dual core

WYY 00LOS6EE

H8MBTOOMOMTR-0EM

* Level 1 caches: 32KB instruction and 32KB data, with cache
coherence

* “out-of-order superscalar pipeline with a tightly-coupled
low-latency level-2 cache up to 4MB in size”
— 15 stage integer / 17-25 stage floating point pipeline, with out-

of-order speculative issue 3-way superscalar execution pipeline

¢ “full hardware virtualization, Large Physical Address
Extensions (LPAE) addressing (40 bit) to 1TB, error
correction capability for fault-tolerance and soft-fault
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— ARM Cortex A-15 core recovery”
— Claimed 2x Performance of * “hw support for data management and arbitration,
iPhone 4’s A5 Chip (fabricated N h N
by Samsung!) enabling multiple software environments and apps to
— still dual core simultaneously access the system capabilities”
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Agenda

* Floating Point Numbers
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Goals for Floating Point

Standard arithmetic for reals for all computers

— Like two’s complement

Keep as much precision as possible in formats

Help programmer with errors in real arithmetic

— 400, -co, Not-A-Number (NaN), exponent overflow,
exponent underflow

Keep encoding that is somewhat compatible with

two’s complement

— E.g., 0in Fl. Pt.is O in two’s complement

— Make it possible to sort without needing to do floating
point comparison

Scientific Notation (e.g., Base 10)

* Normalized scientific notation (aka standard
form or exponential notation):
—rx E/, Eis exponent (usually 10), i is a positive or
negative integer, ris a real number 2 1.0, < 10
— Normalized => No leading Os
—61is6.10 x 10%, 0.000061 is 6.10 x10°>
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Scientific Notation (e.g., Base 10)

(rxel)x(sxel)=(rxs)xeH

(1.999 x 102) x (5.5 x 103) = (1.999 x 5.5) x 10°
=10.9945 x 10°
=1.09945 x 10°

(rxel)/(sxe)=(r/s)xeH

(1.999 x 102) / (5.5 x 103) = 0.3634545... x 101

=3.634545... x 10
For addition/subtraction, you first must align:

(1.999 x 102) + (5.5 x 10%)
=(.1999 x 103) + (5.5 x 103) = 5.6999 x 103
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Which is Less?
(i.e., closer to -oo)

e Ovs. 1x10127?
e 1x101%6vys, 1x10127?
¢ -1x101% s, 0?

e -1x101%6ys, -1 x10127?

e/ Fall 2012 - Lecture #9 Student Roulette?  »*

Which is Less?
(i.e., closer to -o0)

Ovs.1x10127?
1x 10126 ys, 1 x 101272
-1x 107 vs. 0?

-1x 1012 ys, -1 x 101272




Floating Point:
Representing Very Small Numbers
* Zero: Bit pattern of all Os is encoding for 0.000

=> But 0 in exponent should mean most negative
exponent (want 0 to be next to smallest real)

=> Can’t use two’s complement (1000 0000,,,,)

* Bias notation: subtract bias from exponent
— Single precision uses bias of 127; DP uses 1023

* O uses 0000 0000,,,,=>0-127 =  -127,
oo, NaNuses 11111111, =>255-127 = +128
— Smallest SP real can represent: 1.00...00 x 2-126
— Largest SP real can represent: 1.11...11 x 2*+1%7
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Bias Notation (+127)

How it is interpreted How it is encoded

Decimal signed 2's | Biased Notation | Decimal Value of
Exponent | complement Biased Notation
oo, NaN ~For infinities 11111111 255
127 01111111 11111110 254
. 2 00000010 10000001 129
Getting 1 00000001 10000000 128
closer to 0 00000000 01111111 127
zero Sl 11111111 01111110 126
= 11111110 01111101 125
-126 10000010 00000001 1
Zero For Denorms | 10000001 00000000 0
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What If Operation Result Doesn’t Fit
in 32 Bits?
* Overflow: calculate too big a number to
represent within a word
* Unsigned numbers: 1 + 4,294,967,295 (232-1)
Signed numbers: 1 + 2,147,483,647 (231-1)
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Depends on the Programming
Language

* Cunsigned number arithmetic ignores
overflow (arithmetic modulo 232)
1+4,294,967,295 =

0/14/12 Fall 2012 - Lecture #9
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Depends on the Programming
Language

* Cunsigned number arithmetic ignores
overflow (arithmetic modulo 232)
1+4,294,967,295 = FFFF,, +1=0
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Depends on the Programming
Language

* Csigned number arithmetic also ignores
overflow

1+2,147,483,647 (231-1) =

5/14/12 Fall 2012  Lecture #9

Student Roulette?  3°




Depends on the Programming
Language

* Csigned number arithmetic also ignores
overflow

1+2,147,483,647 (23-1) = 1 + EFFF, , = FFFF,_ = -1
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Depends on the Programming
Language

Other languages want overflow signal on
signed numbers (e.g., Fortran)

* What’s a computer architect to do?

MIPS Solution: Offer Both

* Instructions that can trigger overflow:

— add, sub, mult, div, addi, multi, divi
* Instructions that don’t overflow are called
“unsigned” (really means “no overflow”):
— addu, subu, multu, divuy, addiu, multiu, diviu
Given semantics of C, always use unsigned versions

Note: s1t and s1ti do signed comparisons, while
sltuand sltiudo unsigned comparisons
— Nothing to do with overflow

— When would get different answer for s1t vs. s1tu?
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MIPS Solution: Offer Both

* Instructions that can trigger overflow:

— add, sub, mult, div, addi, multi, divi
* Instructions that don’t overflow are called
“unsigned” (really means “no overflow”):
— addu, subu, multu, divuy, addiu, multiu, diviu
Given semantics of C, always use unsigned versions

Note: s1t and s1ti do signed comparisons, while
sltuand sltiudo unsigned comparisons

— Nothing to do with overflow

— When would get different answer for s1t vs. s1tu?
— -1<0signed, but FFFF,, > 0 unsigned!

412 112012 - Lecture #9

What About Real Numbers in Base 27?

* rx E', E where exponent is (2), i is a positive or
negative integer, r is a real number 2 1.0, < 2

* Computers version of normalized scientific
notation called Floating Point notation
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Floating Point Numbers

* 32-bit word has 232 patterns, so must be
approximation of real numbers > 1.0, < 2
* |EEE 754 Floating Point Standard:
— 1 bit for sign (s) of floating point number
— 8 bits for exponent (E)
— 23 bits for fraction (F)
(get 1 extra bit of precision if leading 1 is implicit)
(-1)*x (1 +F) x 2F
* Can represent from 2.0 x 1038to0 2.0 x 1038




Floating Point Numbers

* What about bigger or smaller numbers?
* |EEE 754 Floating Point Standard:
Double Precision (64 bits)
— 1 bit for sign (s) of floating point number
— 11 bits for exponent (E)
— 52 bits for fraction (F)
(get 1 extra bit of precision if leading 1 is implicit)

(-1)sx (1 +F) x 2F
e Can represent from 2.0 x 103%8t0 2.0 x 1038
* 32 bit format called Single Precision
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More Floating Point

What about 0?

— Bit pattern all 0s means 0, so no implicit leading 1
What if divide 1 by 0?

— Can get infinity symbols +oo, -co

— Sign bit 0 or 1, largest exponent, 0 in fraction
What if do something stupid? (oo — o=, 0 + 0)

— Can get special symbols NaN for Not-a-Number

— Sign bit 0 or 1, largest exponent, not zero in fraction
What if result is too big? (2x103% x 2x10?)

— Get overflow in exponent, alert programmer!
What if result is too small? (2x103%8 + 2x102)

— Get underflow in exponent, alert programmer!

Floating Point Add Associativity?

A =(1000000.0 + 0.000001) - 1000000.0
B = (1000000.0 - 1000000.0) + 0.000001

* In single precision floating point arithmetic,
A does not equal B
A'=0.000000, B = 0.000001
Floating Point Addition is not Associative!
— Integer addition is associative
When does this matter?
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MIPS Floating Point Instructions

C, Java has single precision (f1oat) and double
precision (double) types
MIPS instructions: . s for single, . d for double
— FI. Pt. Addition single precision:

Fl. Pt. Addition double precision:

— FI. Pt. Subtraction single precision:
Fl. Pt. Subtraction double precision:
— FI. Pt. Multiplication single precision:
FI. Pt. Multiplication double precision:

— FI. Pt. Divide single precision:
Fl. Pt. Divide double precision:

Student Roulette?  “©

MIPS Floating Point Instructions

¢ C, Java has single precision (f1oat) and double
precision (double) types
* MIPS instructions: .s for single, .d for double

— FI. Pt. Addition single precision: add.s
Fl. Pt. Addition double precision: add.d

— FI. Pt. Subtraction single precision: sub.s
FI. Pt. Subtraction double precision: sub.d

— FI. Pt. Multiplication single precision: mul.s
FI. Pt. Multiplication double precision: mul.d

— FI. Pt. Divide single precision: div.s
Fl. Pt. Divide double precision: div.d
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MIPS Floating Point Instructions

C, Java have single precision (£ 1oat) and double precision
(double) types
MIPS instructions: . s for single, . d for double
— Fl. Pt. Comparison single precision:

Fl. Pt. Comparison double precision:
— Fl. Pt. branch:
Since rarely mix integers and Floating Point, MIPS has
separate registers for floating-point operations: $£0, $f1, ...,
$£31
— Double precision uses adjacent even-odd pairs of registers:
— $fO0and $f1,Sf2 and $£3,$f4 and $£5, .., $£30and $£31
Need data transfer instructions for these new registers
— lwcl (load word), swcl (store word)

— Double precision uses two 1wc1 instructions, two swcl
instructions
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Peer Instruction Question

Suppose Big, Tiny, and BigNegative are floats in C, with Big
initialized to a big number (e.g., age of universe in seconds
or 4.32 x 10Y7), Tiny to a small number (e.g., seconds/
femtosecond or 1.0 x 10-%), BigNegative = - Big.

Here are two conditionals:

I.  (Big * Tiny) * BigNegative == (Big * BigNegative) * Tiny
Il. (Big+ Tiny) + BigNegative == (Big + BigNegative) + Tiny
Which statement about these is correct?

Green. . isfalse and Il. is true

Yellow. . s true and Il. is true
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Peer Instruction Answer

Suppose Big, Tiny, and BigNegative are floats in C, with Big
initialized to a big number (e.g., age of universe in seconds or
4.32 x 10%7), Tiny to a small number (e.g., seconds/femtosecond
or 1.0 x 10'15), BigNegative = - Big.

Here are two conditionals:

. (Big * Tiny) * BigNegative == (Big * BigNegative) * Tiny

Il (Big + Tiny) + BigNegative == (Big + BigNegative) + Tiny

Which statement about these is correct?

Yellow. . is true and Il. is false (if we don’t consider
overflow)—but there are cases where one side overflows
while the other does not!

I. Works ok if no overflow, but because exponents add, if Big *
BigNeg overflows, then result is overflow, not -1

II. Left hand side is O, right hand side is tiny
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Pitfalls

* Floating point addition is NOT associative

* Some optimizations can change order of
floating point computations, which can
change results

* Need to ensure that floating point algorithm is
correct even with optimizations

“And in Conclusion, ...”

* Program can interpret binary number as unsigned
integer, two’s complement signed integer, floating
point number, ASCII characters, Unicode
characters, ... even instructions!

* Integers have largest positive and largest negative
numbers, but represent all in between

— Two’s comp. weirdness is one extra negative
numinteger and floating point operations can lead to
results too big to store within their representations:
overflow/underflow

* Floating point is an approximation of reals
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