10/21/12

You are Here!

Software Hardware
* Parallel Requests

. Assigned t t Smart
CS 6 1 C ° e,sgs.l,ggzarcs CE::U “ y Phone
Great Ideas in Computer Architecture * Parallel Threads py giiiiom & %
. . Assigned to core Achieve High
Timing and State e, Lookup, Ads performance

* Parallel Instructions
>1 instruction @ one time

Instructors: e.g., 5 pipelined instructions
Krste Asanovic, Randy H. Katz * Parallel Data —— : ;
’ \ >1 data item @ one time truction Unit(s) Et:]?tc(g)onal
http://inst.eecs.Berkeley.edu/~cs61c/fal2 e.g., Add of 4 pairs of words oy

* Hardware descrlptlon1 Today
|

All gates @ one time

¢ Programming Languages Logic Gates|
10/21/12 Fall 2012 - Lecture #23 1 10/21/12 N

Levels of Representation/ Revi
Interpretation eview

High Level Language temp = vik];
Program (e.g., C)

vIK] = v[k+1];
v[k+1] = temp;

* Real world voltages are analog, but are

Compiler
b S0 Annhing can be represented quantized to represent logic 0 and logic 1
Program (e.g., MIPS) sw$tl, 0(52) i.e., data or instructions H H H i
yr—— w510, 4(52) * Transistors are just switches, combined to
100 101 0101 oos adoe oot 1100 0si0 form gates: AND, OR, NOT, NAND, NOR
ngvam(MIPS) 1100 0110 1010 1111 0101 1000 0000 1001 ’ ! ’ ’

01011000 00001001 1100 0110 1010 1111
—

Machine

* Truth table can be mapped to gates for
Interpretation

combinational logic design
Hardware Architecture Description
l (e.g., block diagrams) [

* Boolean algebra allows minimization of gates
Architecture
Implementation
] Logic Circuit Description J
Agenda Agenda
* State Elements * State Elements

* Finite State Machines
* And in Conclusion, ...

10/21/12 Fall 2012 Lecture #23 10/21/12 Fall 2012 Lecture #23

Type of Circuits

* Synchronous Digital Systems consist of two basic
types of circuits:

* Combinational Logic (CL) circuits

— Output is a function of the inputs only, not the history of its
execution

— E.g., circuits to add A, B (ALUs)
— Last lecture was CL

* Sequential Logic (SL)
* Circuits that “remember” or store information
* aka “State Elements”
* E.g., memories and registers (Registers)
* Today’s lecture is SL

Design Hierarchy

system
datapath control

Pﬂ\ state
i registers

e !
sters Multiplexer comparator

combinational
ogic

c
reg

A Conceptual MIPS Datapath

Data

Register #

Address Instruction Registers Address
) Register # Data
Instruction memory
memory Register #

Data

Uses for State Elements

* Place to store values for later re-use:
— Register files (like $1-$31 on the MIPS)
— Memory (caches, and main memory)

* Help control flow of information between
combinational logic blocks

— State elements hold up the movement of
information at input to combinational logic blocks
to allow for orderly passage

Accumulator Example

Why do we need to control the flow of information?

x—A4— suM —~—s

Want: S=0;
for (1=0;i<n;i++)
S =5+ X,

Assume:
* Each X value is applied in succession, one per cycle
« After n cycles the sum is present on S

10/21/12 Fall 2012 Lecture #23

First Try: Does this work?

+ N

—
No!

Reason #1: How to control the next iteration of
the ‘for’ loop?
Reason #2: How do we say: ‘S=0"?

10/21/12 Fall 2012 Lecture #23

Second Try: How About This?

Ko Register is used to
S hold up the transfer
of data to adder

vesdd regster &— LoAD/ cLic

Square wave clock sets when things change
High (1)

[t -

Rounded Rectangle per clock means could be 1 or 0
Rough High (1)) angle per ci h °
i i i i H

timing ... Low (0) ! ! : : !
High (1) Xi mulst be read\l/ before clo:ck edge dule to adder dlela

H H

Lot (0) H i i i i

Time

Model for Synchronous Systems

clock _[LI1 [input
input reg a reg , outout
—
F I “es
option feedback
¥ output

* Collection of Combinational Logic blocks separated by registers

« Feedback is optional

* Clock signal(s) connects only to clock input of registers

* Clock (CLK): steady square wave that synchronizes the system

« Register: several bits of state that samples on rising edge of CLK
(pﬂgitive edge-triggered) or fg!ling edge (negative edge»triggere‘d)

10/

Register Internals

)
Register
Q

|
ﬂ
s
A
ﬂ
=
X
O
D,
| =
@—

* ninstances of a “Flip-Flop”

* Flip-flop name because the output flips and flops
between 0 and 1

¢ Dis “data input”, Q is “data output”
¢ Also called “D-type Flip-Flop”

10/21/12 I

Camera Analogy Timing Terms

* Want to take a portrait — timing right before
and after taking picture

* Set up time — don’t move since about to take
picture (open camera shutter)

* Hold time — need to hold still after shutter
opens until camera shutter closes

Time click to data —time from open shutter
until can see image on output (viewfinder)

Hardware Timing Terms

* Setup Time: when the input must be stable
before the edge of the CLK

* Hold Time: when the input must be stable
after the edge of the CLK

* “CLK-to-Q” Delay: how long it takes the output
to change, measured from the edge of the CLK

FSM Maximum Clock Frequency

* What is the maximum frequency of this circuit?

Inputs o Outguts Hint:
Combinational

Frequency = 1/Period

Max Delay = Setup Time + CLK-to-Q Delay + CL Delay

10/21/12 211 2012 - Lec

10/21/12

Pipelining to Improve Performance: Pipelining to Improve Performance
BEFORE (1/2) « Insertion of register allows higher clock frequency (2/2)
* More outputs per second Timing...
Timing.. o T
K m High (1) Ready before clock edge: setup time
L(.7w (0) ‘\WPJ}Q
. High (1) i "
IW\J‘\S Delay for Adder Combinational Logic
Low (0) .
Se
RL High (1) Delay for Setup + Clk to Q
Low (0) N
Sia
Delay for Shifter Combinational Logic
) High (1) R
Ri-
Low (0) Delay for Setup + Clk to Q
Note: delay of 1 clock cycle from input to output.

Clock period limited by propagation delay of adder/shifter
10/21/12 Fall 2012 - Lecture #23

Acend Another Great (Theory) Idea:
genaa Finite State Machines (FSM)

* You may have seen FSMs
in other classes

* Finite State Machines « Same basic idea

« Function can be
represented with a
“state transition diagram”

* With combinational logic
and registers, any FSM can
be implemented in
hardware

Example: 3 Ones FSM Hardware Implementation of FSM

FSM to detect the occurrence of 3 consecutive 1’s in the Input Register needed to hold a representation of the machine’s state.

' Unique bit pattern for each state.
INPY Am||0|1\nw,|1‘l|®

outpuT B m m M
/i

7
Draw the FSM ... @@g g Combinational logic circuit is used

to implement a function maps from
present state (PS) and input
to next state (NS) and output.

Assume state transitions are controlled 4by] The register is used to break the feedback
the clock: On each clock cycle the machine checks the inputs and path between Next State (NS) and Prior State
moves to a new state and produces a new output ... (PS), controlled by the clock

10/21/12 Fall 2012 - Lecture 123 2

10/21/12 Fall 2012 -

Hardware for FSM:

Combinational Logic

Can look at its functional specification, truth table form

10/21/12

P Truth table ...
ot pe
PS| Input | NS | Output
b 00| o |oo 0
o1 o |oo 0
> OUTPUT o1 1 |10 0
wert (4o 10| o |oo 0
mt) 10| 1 |00 1

And, in Conclusion, ...

Hardware systems made from Stateless
Combinational Logic and Stateful “Memory”
Logic (Registers)

Clocks tell us when D-flip-flops change

— Setup and Hold times important

We pipeline long-delay CL for faster clock cycle
— Split up the critical path

Finite State Machines extremely useful

Can implement FSM with register + logic

