

Review

- Real world voltages are analog, but are quantized to represent logic 0 and logic 1
- Transistors are just switches, combined to form gates: AND, OR, NOT, NAND, NOR
- Truth table can be mapped to gates for combinational logic design
- Boolean algebra allows minimization of gates

10/21/12 Fall 2012 - Lecture #23

Agenda

- · State Elements
- Finite State Machines
- And in Conclusion, ...

10/21/12 Fall 2012 – Lecture #23 5

Agenda

- State Elements
- Finite State Machines
- · And in Conclusion, ...

10/21/12 Fall 2012 -- Lecture #23 6

Type of Circuits

- Synchronous Digital Systems consist of two basic types of circuits:
 - Combinational Logic (CL) circuits
 - Output is a function of the inputs only, not the history of its execution
 - E.g., circuits to add A, B (ALUs)
 - Last lecture was CL
 - Sequential Logic (SL)
 - Circuits that "remember" or store information
 - aka "State Elements"
 - E.g., memories and registers (Registers)
 - Today's lecture is SL

40/24/42

0/21/12 Fall 2012 -- Lectu

A Conceptual MIPS Datapath Address Instruction Register # Registe

Uses for State Elements

- Place to store values for later re-use:
 - Register files (like \$1-\$31 on the MIPS)
 - Memory (caches, and main memory)
- Help control flow of information between combinational logic blocks
 - State elements hold up the movement of information at input to combinational logic blocks to allow for orderly passage

10/21/12 Fall 2012 – Lecture #23

Accumulator Example

Why do we need to control the flow of information?

Want:

S=0;

for (i=0; i < n; i++)S = S + X_i

Assume:

- Each X value is applied in succession, one per cycle
- After n cycles the sum is present on S

7/21/12 Fall 2012 -- Lecture #23

First Try: Does this work?

No!

Reason #1: How to control the next iteration of

the 'for' loop?

Reason #2: How do we say: 'S=0'?

1/12 Fall 2012 -- Lecture #23

2

Register Internals

- n instances of a "Flip-Flop"
- Flip-flop name because the output flips and flops between 0 and 1
- D is "data input", Q is "data output"
- Also called "D-type Flip-Flop"

Camera Analogy Timing Terms

- Want to take a portrait timing right before and after taking picture
- Set up time don't move since about to take picture (open camera shutter)
- Hold time need to hold still after shutter opens until camera shutter closes
- Time click to data time from open shutter until can see image on output (viewfinder)

10/21/12 Fall 2012 -- Lecture #23 16

Hardware Timing Terms

- Setup Time: when the input must be stable before the edge of the CLK
- Hold Time: when the input must be stable after the edge of the CLK
- "CLK-to-Q" Delay: how long it takes the output to change, measured from the edge of the CLK

10/21/12 Fall 2012 – Lecture II23 17

FSM Maximum Clock Frequency

• What is the maximum frequency of this circuit?

And, in Conclusion, ...

- Hardware systems made from Stateless
 Combinational Logic and Stateful "Memory"
 Logic (Registers)
- Clocks tell us when D-flip-flops change
 Setup and Hold times important
- We pipeline long-delay CL for faster clock cycle
 Split up the critical path
- Finite State Machines extremely useful
- Can implement FSM with register + logic

10/21/12 Fall 2012 -- Lecture #23