1 Co-occurence

Let A_{w} be the number of times a word w, (e.g. "foo") appears throughout the corpus. Let C_{w} be the number of times w appears in documents that also contain the target word. Then we define

$$
\text { co-occurrence }= \begin{cases}\frac{C_{w} \log ^{3}\left(C_{w}\right)}{A_{w}} & : C_{w}>0 \\ 0 & : \text { else }\end{cases}
$$

2 Co-occurence with distance weighting

Let $d(w, x)$ be a function describing the distance between two instances of words w, x such that $d(w, x)$ is equal to the number of spaces between w and x, or ∞ if w, x are not in the same document.
Let f be a function such that $f(\infty)=0$ and $f(x) \geq 1$ if x is positive.
Let W be the set of all occurrences of a given word throughout the corpus.
Let T be the set of all occurences of the target word in the corpus.
Then we define

$$
S_{w}=\sum_{w \in W} f\left(\min _{t \in T}(d(w, t))\right)
$$

And let

$$
\text { co-occurrence }= \begin{cases}\frac{S_{w} \log ^{3}\left(S_{w}\right)}{|W|} & : S_{w}>0 \\ 0 & : \text { else }\end{cases}
$$

3 Co-occurence with distance weighting and n-grams

Let $d(g, t)$ be a function describing the distance between two instances of grams g, t such that $d(g, t)$ is equal to the number of spaces between g and t, or ∞ if g, t are not in the same document.
Let f be a function such that $f(\infty)=0$ and $f(x) \geq 1$ if x is positive.
Let G be the set of all occurrences of a given gram throughout the corpus.
Let T be the set of all occurences of the target gram in the corpus.
Then we define

$$
S_{g}=\sum_{g \in G} f\left(\min _{t \in T}(d(g, t))\right)
$$

And let

$$
\text { co-occurrence }= \begin{cases}\frac{S_{g} \log ^{3}\left(S_{g}\right)}{|G|} & : S_{g}>0 \\ 0 & : \text { else }\end{cases}
$$

