

Decimal Numbers: Base 10

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Example:
$3271=$

$$
\left(3 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(7 \times 10^{1}\right)+\left(1 \times 10^{0}\right)
$$

Cel Cs61C LO2 Number Reprosentation (3) Garcie, Sping 2005 © UCB

Hexadecimal Numbers: Base 16

- Hexadecimal:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

- Normal digits + 6 more from the alphabet
- In C, written as 0x... (e.g., 0xFAB5)
- Conversion: Binary $\Leftrightarrow \mathrm{Hex}$
- 1 hex digit represents 16 decimal values
- 4 binary digits represent 16 decimal values
$\Rightarrow 1$ hex digit replaces 4 binary digits
- One hex digit is a "nibble". Two is a "byte"
- Example:
- 101011000011 (binary) = 0x \qquad $?$ l canconnanament

Putting it all in perspective...

"If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost $\$ 100$, get a million miles per gallon, and explode once a year, killing everyone inside.

- Robert X. Cringely

Numbers: positional notation

- Number Base $B \Rightarrow B$ symbols per digit:
- Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Base 2 (Binary): 0,1

- Number representation:
- $d_{31} d_{30} \ldots d_{1} d_{0}$ is a 32 digit number
\cdot value $=d_{31} \times \mathbf{B}^{31}+d_{30} \times \mathbf{B}^{30}+\ldots+d_{1} \times \mathbf{B}^{1}+d_{0} \times \mathbf{B}^{0}$
- Binary: 0,1 (In binary digits called "bits")
. 0 b11010 $=1 \times \mathbf{2}^{4}+\mathbf{1} \times \mathbf{2}^{3}+0 \times \mathbf{2}^{\mathbf{2}}+\mathbf{1 \times \mathbf { 2 } ^ { 1 } + 0 \times \mathbf { 2 } ^ { 0 }}$ $=16+8+2$ \#s often written $=26$
Ob... • Here 5 digit binary \# turns into a 2 digit decimal \#
- Can we find a base that converts to binary easily?
cs6ic Lo2 Number Reprosestatation (4)

What to do with representations of numbers?

- Just what we do with numbers!
- Add them 1
- Subtract them 10010
- Multiply them $\quad+\quad 0 \quad 1 \quad 11$
- Divide them
- Compare them
- Example: $10+7=17$

1000001

- ..so simple to add in binary that we can build circuits to do it!
- subtraction just as you would in decimal
- Comparison: How do you tell if $\mathrm{X}>\mathrm{Y}$?

Cal

BIG IDEA: Bits can represent anything!!

- Characters?
- 26 letters $\Rightarrow 5$ bits ($\mathbf{2}^{5}=32$)
- upper/lower case + punctuation $\Rightarrow 7$ bits (in 8) ("ASCI")
- standard code to cover all the world's,
languages $\Rightarrow 8,16,32$ bits ("Unicode") languages $\Rightarrow 8,16,32$ bits ("Unicode") www.unicode.com
- Logical values?
$\cdot 0 \Rightarrow$ False, $1 \Rightarrow$ True
- colors ? Ex: Red(00) Green (01) Blue(11)
- locations / addresses? commands?
\cdot MEMORIZE: N bits \Leftrightarrow at most 2^{N} things
Cal \qquad

Shortcomings of sign and magnitude?

- Arithmetic circuit complicated
- Special steps depending whether signs are the same or not
- Also, two zeros
- $0 \times 00000000=+0_{\text {ten }}$
- $0 \times 80000000=-0_{\text {ten }}$
- What would two 0s mean for programming?
- Therefore sign and magnitude abandoned

Cal

Which base do we use?

- Decimal: great for humans, especially when doing arithmetic
- Hex: if human looking at long strings of binary numbers, its much easier to convert to hex and look 4 bits/symbol
- Terrible for arithmetic on paper
- Binary: what computers use;
you will learn how computers do +, -, *, /
- To a computer, numbers always binary
- Regardless of how number is written: $32_{\text {ten }}==32_{10}=0 \times 20==100000_{2}=0 \mathrm{~b} 100000$
- Use subscripts "ten", "hex", "two" in book, slides when might be confusing
and Garcia, Sping 2005 @ UCB

How to Represent Negative Numbers?

- So far, unsigned numbers
- Obvious solution: define leftmost bit to be sign!
$\cdot 0 \Rightarrow+, 1 \Rightarrow-$
- Rest of bits can be numerical value of number
- Representation called sign and magnitude
- MIPS uses 32 -bit integers. $+1_{\text {ten }}$ would be:

00000000000000000000000000000001

- And $-1_{\text {ten }}$ in sign and magnitude would be:

10000000000000000000000000000001
Cal

Another try: complement the bits

- Example: $\quad \mathbf{7}_{10}=\mathbf{0 0 1 1 1}_{2} \quad-\mathbf{7}_{10}=\mathbf{1 1 0 0 0}_{2}$
- Called One's Complement
- Note: positive numbers have leading 0s, negative numbers have leadings 1 s .

- What is -00000 ? Answer: 11111
- How many positive numbers in N bits?

Cas How many negative ones?

Shortcomings of One's complement?

- Arithmetic still a somewhat complicated.
- Still two zeros
- $0 \times 00000000=+\mathbf{0}_{\text {ten }}$
- $0 \times x F F F F F F F=-0_{\text {ten }}$
- Although used for awhile on some computer products, one's complement was eventually abandoned because another solution was better.

Cab
CS61C LO2 Number Reprosentation (14) Garcib, Sping 2005 © UCB

Two's Complement Formula

- Can represent positive and negative numbers in terms of the bit value times a power of 2:

$$
d_{31} \times-\left(2^{31}\right)+d_{30} \times 2^{30}+\ldots+d_{2} \times 2^{2}+d_{1} \times 2^{1}+d_{0} \times 2^{0}
$$

- Example: $1101_{\text {two }}$
$=1 \mathrm{x}-\left(2^{3}\right)+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$
$=-2^{3}+2^{2}+0+2^{0}$
$=-8+4+0+1$
$=-8+5$
$=-3_{\text {ten }}$
Cal

Standard Negative Number Representation

- What is result for unsigned numbers if tried to subtract large number from a small one?
- Would try to borrow from string of leading 0 s , so result would have a string of leading is - $3-4 \Rightarrow 00$... $0011-00 \ldots 0100=11 . .1111$
- With no obvious better alternative, pick representation that made the hardware simple
- As with sign and magnitude,
leading $0 \mathrm{~s} \Rightarrow$ positive, leading $1 \mathrm{~s} \Rightarrow$ negative - 000000....xxx is $\geq 0,111111$...xxx is <0 - except $1 . . .1111$ is -1 , not -0 (as in sign \& mag.)
-This representation is Two's Complement 6 CS61C LO2 Number Representation (15) Garcia, Spping 2005 © UCB

Two's Complement for $\mathrm{N}=32$	
$0000 \ldots 0000000000000^{0000} 0_{\text {two }}=$	$\mathrm{O}_{\text {ten }}$
$0000 \ldots 0000000000000001_{\text {two }}=$	
$0000 \ldots 0000000000000^{(10} 0_{\text {two }}=$	2 ten
$\dot{0111} \ldots 111111111^{1111} 1101_{\text {two }}=$	2,147,483,645 ${ }_{\text {ten }}$
0111.. $1111111111111110^{111}{ }_{\text {two }}=$	2,147,483,646 ${ }_{\text {ton }}$
	2,147,483,647 ${ }_{\text {ton }}$
$1000 \ldots 0000000000000^{0} 000{ }_{\text {wne }}=$	-2.147.483.648 ${ }_{\text {ton }}$
$1000 \ldots 0000000000000001_{\text {two }}=$	-2,147,483,647 ${ }_{\text {ten }}$
$1000 \ldots 0000000000000^{(1010}$ two $=$	-2,147,483,646 ${ }_{\text {ten }}$
	$-3_{\text {ten }}$
$1111 \ldots 1111111111111110^{161}$ two $=$	-2 ${ }_{\text {ten }}^{\text {ten }}$
$1111 \ldots 1111111111111111^{111}$ two $=$	$-1_{\text {ten }}$
- One zero; 1st bit called sign bit	
- 1 "extra" negative:no positive $2,147,483,648_{\text {ten }}$	
CS61C L02 N umber Representation (17)	Garcia, Spping 2005 © UCB

Two's Complement shortcut: Negation

- Change every 0 to 1 and 1 to 0 (invert or complement), then add 1 to the result
- Proof: Sum of number and its (one's) complement must be 111...111 two

However, $111 . . .111_{\text {two }}=-1_{\text {ten }}$
Let $x^{\prime} \Rightarrow$ one's complement representation of x
Then $x+x^{\prime}=-1 \Rightarrow x+x^{\prime}+1=0 \Rightarrow x^{\prime}+1=-x$
-Example: -3 to +3 to -3

Two's comp. shortcut: Sign extension

- Convert 2's complement number rep. using \mathbf{n} bits to more than \mathbf{n} bits
- Simply replicate the most significant bit (sign bit) of smaller to fill new bits -2's comp. positive number has infinite 0 s -2's comp. negative number has infinite 1 s -Binary representation hides leading bits; sign extension restores some of them -16-bit $-4_{\text {ten }}$ to 32 -bit:
$1111111111111100^{\text {two }}$
Cal $1111111111111111111111111111{1100_{\text {two }}}$

Garcia, Sping 2005 © UCB

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta
physics.nist.gov/cuu/Units/binary.html
- Common use prefixes (all SI, except K [= k in SI])

Name	Abbr	Factor	SIsize
Kilo	K	$2^{10}=1,024$	$10^{3}=1,000$
Mega	M	$2^{20}=1,048,576$	$10^{6}=1,000,000$
Giga	G	$2^{30}=1,073,741,824$	$10^{9}=1,000,000,000$
Tera	T	$2^{40}=1,099,511,627,776$	$10^{12}=1,000,000,000,000$
Peta	P	$2^{50}=1,125,899,906,842,624$	$10^{15}=1,000,000,000,000,000$
Exa	E	$2^{60}=1,152,921,504,606,846,976$	$10^{18}=1,000,000,000,000,000,000$
Zetta	z	$2^{70}=1,180,591,620,717,411,303,424$	$10^{21}=1,000,000,000,000,000,000,000$
Yotta	Y	$2^{80}=1,208,925,819,614,629,174,706,176$	$10^{24}=1,000,000,000,000,000,000,000,000$

- Confusing! Common usage of "kilobyte" means 1024 bytes, but the "correct" SI value is 1000 bytes
- Hard Disk manufacturers \& Telecommunications are the only computing groups that use SI factors, so what is advertised as a 30 GB drive will actually only hold about 28×2^{30} bytes, and a $1 \mathrm{Mbit} / \mathrm{s}$ connection Ces transfers 10^{6} bpictoz Garcia, Sping 2005 © UCB

[^0]
What if too big?

- Binary bit patterns above are simply representatives of numbers. Strictly speaking they are called "numerals".
- Numbers really have an ∞ number of digits
- with almost all being same ($00 \ldots 0$ or $11 \ldots 1$) except for a few of the rightmost digits
- Just don't normally show leading digits
- If result of add (or -, *, /) cannot be represented by these rightmost HW bits, overflow is said to have occurred.

kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi
en.wikipedia.org/wiki/Binary_prefix
- New IEC Standard Prefixes [only to exbi officially]

Name	Abbr	Factor
kibi	Ki	$2^{10}=1,024$
mebi	Mi	$2^{20}=1,048,576$
gibi	Gi	$2^{2^{30}}=1,073,741,824$
tebi	Ti	$2^{40}=1,099,511,627,776$
pebi	Pi	$2^{50}=1,125,899,906,842,624$
exbi	Ei	$2^{2^{60}}=1,152,921,504,606,846,976$
zebi	Zi	$2^{70}=1,180,591,620,717,411,303,424$
yobi	Yi	$2^{80}=1,208,925,819,614,629,174,706,176$

As of this writing, this proposal has yet to gain widespread use...

- International Electrotechnical Commission (IEC) in 1999 introduced these to specify binary quantities.
- Names come from shortened versions of the original SI prefixes (same pronunciation), and bi is short for "binary", but pronounced "bee" :-(
- Now SI prefixes only have their base-10 meaning and never have a base-2 meaning.

And in Conclusion...

- We represent "things" in computers as particular bit patterns: N bits $\Rightarrow 2^{N}$
- Decimal for human calculations, binary for computers, hex to write binary more easily
-1's complement - mostly abandoned

- 2's complement universal in computing: cannot avoid, so learn

10000 ... 1111011111
Caverflow: numbers ∞; computers finite,
cre erkors!
.

[^0]: ## The way to remember \#s

 - What is $\mathbf{2}^{34}$? How many bits addresses (l.e., what's ceil $\log _{2}=1 \mathrm{~g}$ of) 2.5 TiB ?
 - Answer! 2^{XY} means...

 | $X=0 \Rightarrow-2$ | $Y=0 \Rightarrow 1$ |
 | :--- | :--- |
 | $X=1 \Rightarrow$ kibi $\sim 10^{3}$ | $Y=1 \Rightarrow 2$ |
 | $X=2 \Rightarrow$ mebi 10^{6} | $Y=2 \Rightarrow 4$ |
 | $X=3 \Rightarrow$ gibi $\sim 10^{9}$ | $Y=3 \Rightarrow 8$ |
 | $X=4 \Rightarrow$ tebi $\sim 10^{12}$ | $Y=4 \Rightarrow 16$ |
 | $X=5 \Rightarrow$ tebi | $\Rightarrow 10^{15}$ |
 | $Y=5 \Rightarrow 32$ | |
 | $X=6 \Rightarrow$ exbi 10^{18} | $Y=6 \Rightarrow 64$ |
 | $X=7 \Rightarrow$ zebi $\sim 10^{21}$ | $Y=7 \Rightarrow 128$ |
 | $X=8 \Rightarrow$ yobi $\sim 10^{24}$ | $Y=8 \Rightarrow 256$ |
 | | $Y=9 \Rightarrow 512$ |
 | Cl | |

