
CS61C L02 Number Representation (1) Garcia, Spring 2005 © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture #1 – Number Representation
2005-01-21

Great book ⇒
 The Universal History

of Numbers

by Georges Ifrah

CS61C L02 Number Representation (2) Garcia, Spring 2005 © UCB

Putting it all in perspective…

“If the automobile had followed the
same development cycle as the

computer, a Rolls-Royce would today
cost $100, get a million miles per
gallon, and explode once a year,

killing everyone inside.”

– Robert X. Cringely

CS61C L02 Number Representation (3) Garcia, Spring 2005 © UCB

Decimal Numbers: Base 10

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example:
3271 =

(3x103) + (2x102) + (7x101) + (1x100)

CS61C L02 Number Representation (4) Garcia, Spring 2005 © UCB

Numbers: positional notation
• Number Base B ⇒ B symbols per digit:

• Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Base 2 (Binary): 0, 1

• Number representation:
• d31d30 ... d1d0 is a 32 digit number
• value = d31 × B31 + d30 × B30 + ... + d1 × B1 + d0 × B0

• Binary: 0,1 (In binary digits called “bits”)
• 0b11010 = 1×24 + 1×23 + 0×22 + 1×21 + 0×20

= 16 + 8 + 2
= 26

• Here 5 digit binary # turns into a 2 digit decimal #
• Can we find a base that converts to binary easily?

#s often written
0b…

CS61C L02 Number Representation (5) Garcia, Spring 2005 © UCB

Hexadecimal Numbers: Base 16

• Hexadecimal:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
• Normal digits + 6 more from the alphabet
• In C, written as 0x… (e.g., 0xFAB5)

• Conversion: Binary⇔Hex
• 1 hex digit represents 16 decimal values
• 4 binary digits represent 16 decimal values
⇒1 hex digit replaces 4 binary digits

•One hex digit is a “nibble”. Two is a “byte”
• Example:
• 1010 1100 0011 (binary) = 0x_____ ?

CS61C L02 Number Representation (6) Garcia, Spring 2005 © UCB

Decimal vs. Hexadecimal vs. Binary
Examples:
1010 1100 0011 (binary)
= 0xAC3
10111 (binary)
= 0001 0111 (binary)
= 0x17
0x3F9
= 11 1111 1001 (binary)
How do we convert between
hex and Decimal?

00 0 0000
01 1 0001
02 2 0010
03 3 0011
04 4 0100
05 5 0101
06 6 0110
07 7 0111
08 8 1000
09 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111MEMORIZE!

Examples:
1010 1100 0011 (binary)
= 0xAC3
10111 (binary)
= 0001 0111 (binary)
= 0x17
0x3F9
= 11 1111 1001 (binary)
How do we convert between
hex and Decimal?

CS61C L02 Number Representation (7) Garcia, Spring 2005 © UCB

What to do with representations of numbers?

• Just what we do with numbers!
• Add them
• Subtract them
• Multiply them
• Divide them
• Compare them

• Example: 10 + 7 = 17
• …so simple to add in binary that we can

build circuits to do it!
• subtraction just as you would in decimal
• Comparison: How do you tell if X > Y ?

 1 0 1 0

+ 0 1 1 1

1 0 0 0 1

11

CS61C L02 Number Representation (8) Garcia, Spring 2005 © UCB

Which base do we use?

• Decimal: great for humans, especially
when doing arithmetic

• Hex: if human looking at long strings of
binary numbers, its much easier to convert
to hex and look 4 bits/symbol
• Terrible for arithmetic on paper

• Binary: what computers use;
you will learn how computers do +, -, *, /
• To a computer, numbers always binary
• Regardless of how number is written:

32ten == 3210 == 0x20 == 1000002 == 0b100000
• Use subscripts “ten”, “hex”, “two” in book,

slides when might be confusing

CS61C L02 Number Representation (9) Garcia, Spring 2005 © UCB

BIG IDEA: Bits can represent anything!!

• Characters?
• 26 letters ⇒ 5 bits (25 = 32)
• upper/lower case + punctuation

 ⇒ 7 bits (in 8) (“ASCII”)
• standard code to cover all the world’s

languages ⇒ 8,16,32 bits (“Unicode”)
www.unicode.com

• Logical values?
• 0 ⇒ False, 1 ⇒ True

• colors ? Ex:
• locations / addresses? commands?
•MEMORIZE: N bits ⇔ at most 2N things

Red (00) Green (01) Blue (11)

CS61C L02 Number Representation (10) Garcia, Spring 2005 © UCB

How to Represent Negative Numbers?

• So far, unsigned numbers
•Obvious solution: define leftmost bit to be sign!

• 0 ⇒ +, 1 ⇒ -
• Rest of bits can be numerical value of number

• Representation called sign and magnitude
•MIPS uses 32-bit integers. +1ten would be:

0000 0000 0000 0000 0000 0000 0000 0001
• And –1ten in sign and magnitude would be:

1000 0000 0000 0000 0000 0000 0000 0001

CS61C L02 Number Representation (11) Garcia, Spring 2005 © UCB

Shortcomings of sign and magnitude?

•Arithmetic circuit complicated
•Special steps depending whether signs are
the same or not

•Also, two zeros
• 0x00000000 = +0ten
• 0x80000000 = -0ten

•What would two 0s mean for programming?

•Therefore sign and magnitude abandoned

CS61C L02 Number Representation (12) Garcia, Spring 2005 © UCB

Administrivia
•Look at class website often!
•Homework #1 up now, due Wed @
11:59pm
•Homework #2 up soon, due following
Wed
•There’s a LOT of reading upcoming --
start now.

CS61C L02 Number Representation (13) Garcia, Spring 2005 © UCB

Another try: complement the bits

•Example: 710 = 001112 -710 = 110002

•Called One’s Complement
•Note: positive numbers have leading 0s,
negative numbers have leadings 1s.

00000 00001 01111...

111111111010000 ...

•What is -00000 ? Answer: 11111
•How many positive numbers in N bits?
•How many negative ones?

CS61C L02 Number Representation (14) Garcia, Spring 2005 © UCB

Shortcomings of One’s complement?

•Arithmetic still a somewhat complicated.
•Still two zeros
• 0x00000000 = +0ten
• 0xFFFFFFFF = -0ten

•Although used for awhile on some
computer products, one’s complement
was eventually abandoned because
another solution was better.

CS61C L02 Number Representation (15) Garcia, Spring 2005 © UCB

Standard Negative Number Representation
•What is result for unsigned numbers if tried
to subtract large number from a small one?
•Would try to borrow from string of leading 0s,
so result would have a string of leading 1s
- 3 - 4 ⇒ 00…0011 - 00…0100 = 11…1111

•With no obvious better alternative, pick
representation that made the hardware simple
•As with sign and magnitude,
leading 0s ⇒ positive, leading 1s ⇒ negative
- 000000...xxx is ≥ 0, 111111...xxx is < 0
- except 1…1111 is -1, not -0 (as in sign & mag.)

•This representation is Two’s Complement

CS61C L02 Number Representation (16) Garcia, Spring 2005 © UCB

2’s Complement Number “line”: N = 5
•2N-1 non-
negatives
•2N-1 negatives
•one zero
•how many
positives?

00000 00001
00010

11111
11110

10000 0111110001

0 1 2
-1

-2

-15 -16 15

.

.

.

.

.

.

-3
11101

-411100

00000 00001 01111...

111111111010000 ...

CS61C L02 Number Representation (17) Garcia, Spring 2005 © UCB

Two’s Complement for N=32
 0000 ... 0000 0000 0000 0000two = 0ten0000 ... 0000 0000 0000 0001two = 1ten0000 ... 0000 0000 0000 0010two = 2ten. . .

0111 ... 1111 1111 1111 1101two = 2,147,483,645ten0111 ... 1111 1111 1111 1110two = 2,147,483,646ten0111 ... 1111 1111 1111 1111two = 2,147,483,647ten1000 ... 0000 0000 0000 0000two = –2,147,483,648ten1000 ... 0000 0000 0000 0001two = –2,147,483,647ten1000 ... 0000 0000 0000 0010two = –2,147,483,646ten. . .
1111 ... 1111 1111 1111 1101two = –3ten1111 ... 1111 1111 1111 1110two = –2ten1111 ... 1111 1111 1111 1111two = –1ten

•One zero; 1st bit called sign bit
• 1 “extra” negative:no positive 2,147,483,648ten

CS61C L02 Number Representation (18) Garcia, Spring 2005 © UCB

Two’s Complement Formula
•Can represent positive and negative
numbers in terms of the bit value times a
power of 2:

d31 x -(231) + d30 x 230 + ... + d2 x 22 + d1 x 21 + d0 x 20

•Example: 1101two
= 1x-(23) + 1x22 + 0x21 + 1x20

= -23 + 22 + 0 + 20

= -8 + 4 + 0 + 1
= -8 + 5
= -3ten

CS61C L02 Number Representation (19) Garcia, Spring 2005 © UCB

Two’s Complement shortcut: Negation
•Change every 0 to 1 and 1 to 0 (invert or
complement), then add 1 to the result
•Proof: Sum of number and its (one’s)
complement must be 111...111two

However, 111...111two= -1ten
Let x’ ⇒ one’s complement representation of x
Then x + x’ = -1 ⇒ x + x’ + 1 = 0 ⇒ x’ + 1 = -x

•Example: -3 to +3 to -3
x : 1111 1111 1111 1111 1111 1111 1111 1101twox’: 0000 0000 0000 0000 0000 0000 0000 0010two+1: 0000 0000 0000 0000 0000 0000 0000 0011two()’: 1111 1111 1111 1111 1111 1111 1111 1100two+1: 1111 1111 1111 1111 1111 1111 1111 1101two

You should be able to do this in your head…

CS61C L02 Number Representation (20) Garcia, Spring 2005 © UCB

Two’s comp. shortcut: Sign extension

• Convert 2’s complement number rep.
using n bits to more than n bits
• Simply replicate the most significant bit

(sign bit) of smaller to fill new bits
•2’s comp. positive number has infinite 0s
•2’s comp. negative number has infinite 1s
•Binary representation hides leading bits;
sign extension restores some of them
•16-bit -4ten to 32-bit:

1111 1111 1111 1100two

1111 1111 1111 1111 1111 1111 1111 1100two

CS61C L02 Number Representation (21) Garcia, Spring 2005 © UCB

What if too big?
• Binary bit patterns above are simply

representatives of numbers. Strictly speaking
they are called “numerals”.

• Numbers really have an ∞ number of digits
• with almost all being same (00…0 or 11…1) except

for a few of the rightmost digits
• Just don’t normally show leading digits

• If result of add (or -, *, /) cannot be
represented by these rightmost HW bits,
overflow is said to have occurred.

00000 00001 00010 1111111110
unsigned

CS61C L02 Number Representation (22) Garcia, Spring 2005 © UCB

Peer Instruction Question

X = 1111 1111 1111 1111 1111 1111 1111 1100two

Y = 0011 1011 1001 1010 1000 1010 0000 0000two

A. X > Y (if signed)
B. X > Y (if unsigned)
C. An encoding for Babylonians could

have 2N non-zero numbers w/N bits!

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L02 Number Representation (23) Garcia, Spring 2005 © UCB

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

• Common use prefixes (all SI, except K [= k in SI])

• Confusing! Common usage of “kilobyte” means
1024 bytes, but the “correct” SI value is 1000 bytes

• Hard Disk manufacturers & Telecommunications are
the only computing groups that use SI factors, so
what is advertised as a 30 GB drive will actually only
hold about 28 x 230 bytes, and a 1 Mbit/s connection
transfers 106 bps.

1024 = 1,000,000,000,000,000,000,000,000280 = 1,208,925,819,614,629,174,706,176YYotta
1021 = 1,000,000,000,000,000,000,000270 = 1,180,591,620,717,411,303,424ZZetta
1018 = 1,000,000,000,000,000,000260 = 1,152,921,504,606,846,976EExa
1015 = 1,000,000,000,000,000250 = 1,125,899,906,842,624PPeta
1012 = 1,000,000,000,000240 = 1,099,511,627,776TTera
109 = 1,000,000,000230 = 1,073,741,824GGiga
106 = 1,000,000220 = 1,048,576MMega
103 = 1,000210 = 1,024KKilo
SI sizeFactorAbbrName

physics.nist.gov/cuu/Units/binary.html

CS61C L02 Number Representation (24) Garcia, Spring 2005 © UCB

kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi

• New IEC Standard Prefixes [only to exbi officially]

• International Electrotechnical Commission (IEC) in
1999 introduced these to specify binary quantities.
• Names come from shortened versions of the

original SI prefixes (same pronunciation) and bi is
short for “binary”, but pronounced “bee” :-(
• Now SI prefixes only have their base-10 meaning

and never have a base-2 meaning.

280 = 1,208,925,819,614,629,174,706,176
270 = 1,180,591,620,717,411,303,424
260 = 1,152,921,504,606,846,976
250 = 1,125,899,906,842,624
240 = 1,099,511,627,776
230 = 1,073,741,824
220 = 1,048,576
210 = 1,024
Factor

Yiyobi
Zizebi
Eiexbi
Pipebi
Titebi
Gigibi
Mimebi
Kikibi

AbbrName

en.wikipedia.org/wiki/Binary_prefix

As of this
writing, this
proposal has
yet to gain
widespread
use…

CS61C L02 Number Representation (25) Garcia, Spring 2005 © UCB

•What is 234? How many bits addresses
(I.e., what’s ceil log2 = lg of) 2.5 TiB?
•Answer! 2XY means…

X=0 ⇒ ---
X=1 ⇒ kibi ~103

X=2 ⇒ mebi ~106

X=3 ⇒ gibi ~109

X=4 ⇒ tebi ~1012

X=5 ⇒ tebi ~1015

X=6 ⇒ exbi ~1018

X=7 ⇒ zebi ~1021

X=8 ⇒ yobi ~1024

The way to remember #s

Y=0 ⇒ 1
Y=1 ⇒ 2
Y=2 ⇒ 4
Y=3 ⇒ 8
Y=4 ⇒ 16
Y=5 ⇒ 32
Y=6 ⇒ 64
Y=7 ⇒ 128
Y=8 ⇒ 256
Y=9 ⇒ 512

MEMORIZE!

CS61C L02 Number Representation (26) Garcia, Spring 2005 © UCB

Course Problems…Cheating
• What is cheating?

• Studying together in groups is encouraged.
• Turned-in work must be completely your own.
• Common examples of cheating: running out of time on a

assignment and then pick up output, take homework
from box and copy, person asks to borrow solution “just
to take a look”, copying an exam question, …

• You’re not allowed to work on homework/projects/exams
with anyone (other than ask Qs walking out of lecture)

• Both “giver” and “receiver” are equally culpable

• Cheating points: negative points for that
assignment / project / exam (e.g., if it’s worth 10
pts, you get -10) In most cases, F in the course.
• Every offense will be referred to the

Office of Student Judicial Affairs.
www.eecs.berkeley.edu/Policies/acad.dis.shtml

CS61C L02 Number Representation (27) Garcia, Spring 2005 © UCB

Student Learning Center (SLC)

•Cesar Chavez Center (on Lower Sproul)
•The SLC will offer directed study
groups for students CS 61C.
•They will also offer Drop-in tutoring
support for about 20 hours each week.
•Most of these hours will be conducted
by paid tutorial staff, but these will also
be supplemented by students who are
receiving academic credit for tutoring.

CS61C L02 Number Representation (28) Garcia, Spring 2005 © UCB

And in Conclusion...
•We represent “things” in computers as

particular bit patterns: N bits ⇒ 2N

• Decimal for human calculations, binary for
computers, hex to write binary more easily
• 1’s complement - mostly abandoned

• 2’s complement universal in computing:
cannot avoid, so learn

•Overflow: numbers ∞; computers finite,
errors!

00000 00001 01111...

111111111010000 ...

00000 00001 01111...

111111111010000 ...

CS61C L02 Number Representation (29) Garcia, Spring 2005 © UCB

Bonus Slides

•Peer instruction let’s us skip example
slides since you are expected to read
book and lecture notes beforehand,
but we include them for your review
•Slides shown in logical sequence
order

CS61C L02 Number Representation (30) Garcia, Spring 2005 © UCB

BONUS: Numbers represented in memory

•Memory is a place to
store bits
•A word is a fixed
number of bits (eg,
32) at an address
•Addresses are
naturally represented
as unsigned numbers
in C

101101100110

00000

11111 = 2k - 1

01110

CS61C L02 Number Representation (31) Garcia, Spring 2005 © UCB

BONUS: Signed vs. Unsigned Variables

•Java just declares integers int
•Uses two’s complement

•C has declaration int also
•Declares variable as a signed integer
•Uses two’s complement

•Also, C declaration unsigned int
•Declares a unsigned integer
• Treats 32-bit number as unsigned
integer, so most significant bit is part of
the number, not a sign bit

