
CS61C L03 Introduction to C (pt 1) (1) Garcia, Spring 2005 © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 3 – Introduction to
the C Programming Language

 2005-01-24

Princeton cracks down! ⇒
Previously, nearly half the

grades given out were {A-,A,A+}…not
unusual; other Ivys 44-55%. New cap is

35%. EECS policy is 17% (Lower div)
and 23% (upper), though not strict.
www.ledger-enquirer.com/mld/mercurynews/news/world/10713562.htm

CS61C L03 Introduction to C (pt 1) (2) Garcia, Spring 2005 © UCB

Review (1): Overview
•We represent “things” in computers as

particular bit patterns: N bits ⇒ 2N

• Decimal for human calculations, binary for
computers, hex to write binary more easily
• 1’s complement - mostly abandoned

• 2’s complement universal in computing:
cannot avoid, so learn

•Overflow: numbers ∞; computers finite,
errors!

00000 00001 01111...

111111111010000 ...

00000 00001 01111...

111111111010000 ...

CS61C L03 Introduction to C (pt 1) (3) Garcia, Spring 2005 © UCB

•What is 227? How many bits addresses
(I.e., what’s ceil log2 = lg of) 19 PiB?
•Answer! 2XY means…

X=0 ⇒ ---
X=1 ⇒ kibi ~103

X=2 ⇒ mebi ~106

X=3 ⇒ gibi ~109

X=4 ⇒ tebi ~1012

X=5 ⇒ pebi ~1015

X=6 ⇒ exbi ~1018

X=7 ⇒ zebi ~1021

X=8 ⇒ yobi ~1024

Review(2): The way to remember #s

Y=0 ⇒ 1
Y=1 ⇒ 2
Y=2 ⇒ 4
Y=3 ⇒ 8
Y=4 ⇒ 16
Y=5 ⇒ 32
Y=6 ⇒ 64
Y=7 ⇒ 128
Y=8 ⇒ 256
Y=9 ⇒ 512

MEMORIZE!

CS61C L03 Introduction to C (pt 1) (4) Garcia, Spring 2005 © UCB

Disclaimer

• Important: You will not learn how to
fully code in C in these lectures!
You’ll still need your C reference for
this course.

• K&R is a must-have reference.
- Check online for more sources.

• “JAVA in a Nutshell,” O’Reilly.
- Chapter 2, “How Java Differs from C”.

CS61C L03 Introduction to C (pt 1) (5) Garcia, Spring 2005 © UCB

Compilation : Overview

C compilers take C and convert it into
an architecture specific machine code
(string of 1s and 0s).

• Unlike Java which converts to
architecture independent bytecode.

• Unlike most Scheme environments
which interpret the code.

• Generally a 2 part process of compiling
.c files to .o files, then linking the .o files
into executables

CS61C L03 Introduction to C (pt 1) (6) Garcia, Spring 2005 © UCB

Compilation : Advantages

•Great run-time performance:
generally much faster than Scheme or
Java for comparable code (because it
optimizes for a given architecture)
•OK compilation time: enhancements
in compilation procedure
(Makefiles) allow only modified files
to be recompiled

CS61C L03 Introduction to C (pt 1) (7) Garcia, Spring 2005 © UCB

Compilation : Disadvantages

•All compiled files (including the
executable) are architecture specific,
depending on both the CPU type and
the operating system.
•Executable must be rebuilt on each
new system.

• Called “porting your code” to a new
architecture.

•The “change→compile→run [repeat]”
iteration cycle is slow

CS61C L03 Introduction to C (pt 1) (8) Garcia, Spring 2005 © UCB

C vs. Java™ Overview (1/2)

Java
• Object-oriented
(OOP)

• “Methods”
• Class libraries of
data structures

• Automatic
memory
management

C
• No built-in object

abstraction. Data
separate from
methods.

• “Functions”
• C libraries are
lower-level

• Manual
memory
management

• Pointers

CS61C L03 Introduction to C (pt 1) (9) Garcia, Spring 2005 © UCB

C vs. Java™ Overview (2/2)

Java
• High memory
overhead from
class libraries

• Relatively Slow
• Arrays initialize
to zero

• Syntax:
 /* comment */
// comment
System.out.print

C
• Low memory
overhead

• Relatively Fast
• Arrays initialize
to garbage

• Syntax:
/* comment */
printf

CS61C L03 Introduction to C (pt 1) (10) Garcia, Spring 2005 © UCB

C Syntax: Variable Declarations
•Very similar to Java, but with a few
minor but important differences
•All variable declarations must go
before they are used
(at the beginning of the block).
•A variable may be initialized in its
declaration.
•Examples of declarations:
• correct: {

int a = 0, b = 10;

...
• incorrect: for (int i = 0; i < 10; i++)

CS61C L03 Introduction to C (pt 1) (11) Garcia, Spring 2005 © UCB

C Syntax: True or False?

•What evaluates to FALSE in C?
• 0 (integer)
• NULL (pointer: more on this later)
• no such thing as a Boolean

•What evaluates to TRUE in C?
• everything else…
• (same idea as in scheme: only #f is
false, everything else is true!)

CS61C L03 Introduction to C (pt 1) (12) Garcia, Spring 2005 © UCB

C syntax : flow control

• Within a function, remarkably close
to Java constructs in methods (shows
its legacy) in terms of flow control
•if-else
•switch

•while and for
•do-while

CS61C L03 Introduction to C (pt 1) (13) Garcia, Spring 2005 © UCB

C Syntax: main
•To get the main function to accept
arguments, use this:
int main (int argc, char *argv[])

•What does this mean?
•argc will contain the number of strings
on the command line (the executable
counts as one, plus one for each
argument).

- Example: unix% sort myFile
•argv is a pointer to an array containing
the arguments as strings (more on
pointers later).

CS61C L03 Introduction to C (pt 1) (14) Garcia, Spring 2005 © UCB

Administrivia : You have a question?

• Do not email Dan (& expect response)
• Hundreds of emails in inbox
• Email doesn’t scale to classes with 200+ students!

• Tips on getting an answer to your question:
• Ask a classmate
• Ask Dan after or before lecture
• The newsgroup, ucb.class.cs61c

- Read it : Has your Q been answered already?
- If not, ask it and check back

• Ask TA in section, lab or OH
• Ask Dan in OH
• Ask Dan in lecture (if relevant to lecture)
• Send your TA email
• Send one of the two Head TAs email
• Send Dan email

CS61C L03 Introduction to C (pt 1) (15) Garcia, Spring 2005 © UCB

Administrivia : Near term
• Upcoming lectures

• C pointers and arrays in detail
• HW

• HW0 due in discussion tomorrow
• HW1 due this Wed @ 23:59 PST
• HW2 due next Wed @ 23:59 PST

• Reading
• K&R Chapters 1-5 (lots, get started now!)
• First quiz due Friday

•Get cardkeys from CS main office Soda Hall
3rd floor if you need/want them
• Soda locks doors @ 6:30pm & on weekends

CS61C L03 Introduction to C (pt 1) (16) Garcia, Spring 2005 © UCB

Address vs. Value

•Consider memory to be a single huge
array:

• Each cell of the array has an address
associated with it.

• Each cell also stores some value.

23 42 101 102 103 104 105 ...

•Don’t confuse the address referring to
a memory location with the value
stored in that location.

CS61C L03 Introduction to C (pt 1) (17) Garcia, Spring 2005 © UCB

Pointers

•An address refers to a particular
memory location. In other words, it
points to a memory location.
•Pointer: A variable that contains the
address of a variable.

23 42 101 102 103 104 105 ...

x y

Location (address)

name
p

104

CS61C L03 Introduction to C (pt 1) (18) Garcia, Spring 2005 © UCB

Pointers
•How to create a pointer:
& operator: get address of a variable

int *p, x; p ? x ?

x = 3;
p ? x 3

p =
&x; p x 3

•How get a value pointed to?
 * “dereference operator”: get value pointed to

printf(“p points to %d\n”,*p);

Note the “*” gets
used 2 different ways
in this example. In
the declaration to
indicate that p is
going to be a pointer,
and in the printf to
get the value pointed
to by p.

CS61C L03 Introduction to C (pt 1) (19) Garcia, Spring 2005 © UCB

Pointers
•How to change a variable pointed to?

• Use dereference * operator on left of =

p x 5*p = 5;

p x 3

CS61C L03 Introduction to C (pt 1) (20) Garcia, Spring 2005 © UCB

Pointers and Parameter Passing
•Java and C pass a parameter “by value”

• procedure/function gets a copy of the
parameter, so changing the copy cannot
change the original
 void addOne (int x) {

 x = x + 1;
}
 int y = 3;
 addOne(y);

•y is still = 3

CS61C L03 Introduction to C (pt 1) (21) Garcia, Spring 2005 © UCB

Pointers and Parameter Passing
•How to get a function to change a value?
 void addOne (int *p) {

*p = *p + 1;
}
 int y = 3;

 addOne(&y);

•y is now = 4

CS61C L03 Introduction to C (pt 1) (22) Garcia, Spring 2005 © UCB

Pointers

•Normally a pointer can only point to
one type (int, char, a struct, etc.).
•void * is a type that can point to
anything (generic pointer)

• Use sparingly to help avoid program
bugs!

CS61C L03 Introduction to C (pt 1) (23) Garcia, Spring 2005 © UCB

Peer Instruction Question

void main(); {
 int *p, x=5, y; // init
 y = *(p = &x) + 10;
 int z;
 flip-sign(p);
 printf("x=%d,y=%d,p=%d\n",x,y,p);
}
flip-sign(int *n){*n = -(*n)}

How many errors?

#Errors
 1
 2
 3
 4
 5
 6
 7
 8
 9
(1)0

CS61C L03 Introduction to C (pt 1) (24) Garcia, Spring 2005 © UCB

Peer Instruction Answer

void main(); {
 int *p, x=5, y; // init
 y = *(p = &x) + 10;
 int z;
 flip-sign(p);
 printf("x=%d,y=%d,p=%d\n",x,y,*p);
}
flip-sign(int *n){*n = -(*n);}

How many errors? I get 7.

#Errors
 1
 2
 3
 4
 5
 6
 7
 8
 9
(1)0

CS61C L03 Introduction to C (pt 1) (25) Garcia, Spring 2005 © UCB

And in conclusion…

•All declarations go at the beginning of
each function.
•Only 0 and NULL evaluate to FALSE.
•All data is in memory. Each memory
location has an address to use to
refer to it and a value stored in it.
•A pointer is a C version of the
address.

• * “follows” a pointer to its value
• & gets the address of a value

