
CS61C L06 C Memory Management (1) Garcia, Spring 2005 © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 6 – C Memory Management
 2005-01-31

Geek Rhythms! ⇒
 “Geeksta rap” album

by Rajeeve Bajaj is getting
lots of play for highlighting

that it’s “cool to be a geek”.
www.rlpkrecords.com

CS61C L06 C Memory Management (2) Garcia, Spring 2005 © UCB

Lecture clarifications
unix% program arg1 arg2
⇒ argc is 3 (not 2 as I said in lecture)

P. 53 contains a precedence table,
useful for answering these questions

x = ++*p; ⇒ *p = *p + 1 ; x = *p;

Thanks to
Rehan Waliany!

CS61C L06 C Memory Management (3) Garcia, Spring 2005 © UCB

Where allocated?

•Structure declaration does not
allocate memory
•Variable declaration does allocate
memory

• If declare outside a procedure,
allocated in static storage

• If declare inside procedure,
allocated on the stack
and freed when
procedure returns.

- NB: main() is a
procedure

int myGlobal;
main() {
 int myTemp;
}

CS61C L06 C Memory Management (4) Garcia, Spring 2005 © UCB

The Stack
•Stack frame includes:

• Return address
• Parameters
• Space for other local variables

•Stack frames contiguous
blocks of memory; stack pointer
tells where top stack frame is
•When procedure ends, stack
frame is tossed off the stack;
frees memory for future stack
frames frame

frame

frame

frameSP

CS61C L06 C Memory Management (5) Garcia, Spring 2005 © UCB

Stack

•Last In, First Out (LIFO) memory
usage

main ()
{ a(0);
}

void a (int m)
{ b(1);
}
void b (int n)
{ c(2);
}
void c (int o)
{ d(3);
}void d (int p)
{
}

stack

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

CS61C L06 C Memory Management (6) Garcia, Spring 2005 © UCB

•Pointers in C allow access to deallocated
memory, leading to hard-to-find bugs !
int * ptr () {

int y;
y = 3;
return &y;

};
main () {
int *stackAddr,content;
stackAddr = ptr();
content = *stackAddr;
printf("%d", content); /* 3 */
content = *stackAddr;
printf("%d", content); /*13451514 */

};

Who cares about stack management?

main

ptr()
(y==3)

SP

main
SP main

printf()
(y==?)

SP

CS61C L06 C Memory Management (7) Garcia, Spring 2005 © UCB

C Memory Management
•C has 3 pools of memory

• Static storage: global variable storage,
basically permanent, entire program run

• The Stack: local variable storage,
parameters, return address
(location of "activation records" in Java or
"stack frame" in C)

• The Heap (dynamic storage): data lives
until deallocated by programmer

•C requires knowing where objects are
in memory, otherwise things don't work
as expected

• Java hides location of objects
CS61C L06 C Memory Management (8) Garcia, Spring 2005 © UCB

The Heap (Dynamic memory)
•Large pool of memory,
not allocated in contiguous order

• back-to-back requests for heap memory
could result blocks very far apart

• where Java new command allocates memory

• In C, specify number of bytes of memory
explicitly to allocate item
 int *ptr;
ptr = (int *) malloc(sizeof(int));
/* malloc returns type (void *),
so need to cast to right type */
•malloc(): Allocates raw, uninitialized
memory from heap

CS61C L06 C Memory Management (9) Garcia, Spring 2005 © UCB

Review: Normal C Memory Management
•A program’s address
space contains 4 regions:

• stack: local variables,
grows downward

• heap: space requested
for pointers via malloc()
; resizes dynamically,
grows upward

• static data: variables
declared outside main,
does not grow or shrink

• code: loaded when
program starts, does not
change

code
static data
heap

stack

For now, OS somehow
prevents accesses between
stack and heap (gray hash
lines). Wait for virtual memory

~ FFFF FFFFhex

~ 0hex

CS61C L06 C Memory Management (10) Garcia, Spring 2005 © UCB

Intel 80x86 C Memory Management
•A C program’s 80x86
address space :

• heap: space requested
for pointers via
malloc(); resizes
dynamically, grows
upward

• static data: variables
declared outside main,
does not grow or shrink

• code: loaded when
program starts, does not
change

• stack: local variables,
grows downward

code
static data
heap

stack~ 08000000hex

CS61C L06 C Memory Management (11) Garcia, Spring 2005 © UCB

Memory Management

•How do we manage memory?
•Code, Static storage are easy:
they never grow or shrink
•Stack space is also easy:
stack frames are created and
destroyed in last-in, first-out (LIFO)
order
•Managing the heap is tricky:
memory can be allocated /
deallocated at any time

CS61C L06 C Memory Management (12) Garcia, Spring 2005 © UCB

Heap Management Requirements

•Want malloc() and free() to run
quickly.
•Want minimal memory overhead
•Want to avoid fragmentation –
when most of our free memory is in
many small chunks

• In this case, we might have many free
bytes but not be able to satisfy a large
request since the free bytes are not
contiguous in memory.

CS61C L06 C Memory Management (13) Garcia, Spring 2005 © UCB

Heap Management

•An example
• Request R1 for 100
bytes

• Request R2 for 1 byte
• Memory from R1 is
freed

• Request R3 for 50
bytes

R2 (1 byte)

R1 (100 bytes)

CS61C L06 C Memory Management (14) Garcia, Spring 2005 © UCB

Heap Management

•An example
• Request R1 for 100
bytes

• Request R2 for 1 byte
• Memory from R1 is
freed

• Request R3 for 50
bytes

R2 (1 byte)

R3?

R3?

CS61C L06 C Memory Management (15) Garcia, Spring 2005 © UCB

K&R Malloc/Free Implementation

•From Section 8.7 of K&R
• Code in the book uses some C language
features we haven’t discussed and is
written in a very terse style, don’t worry
if you can’t decipher the code

•Each block of memory is preceded by
a header that has two fields:
size of the block and
a pointer to the next block
•All free blocks are kept in a linked list,
the pointer field is unused in an
allocated block

CS61C L06 C Memory Management (16) Garcia, Spring 2005 © UCB

K&R Implementation

•malloc() searches the free list for a
block that is big enough. If none is
found, more memory is requested from
the operating system. If what it gets
can’t satisfy the request, it fails.
•free() checks if the blocks adjacent
to the freed block are also free

• If so, adjacent free blocks are merged
(coalesced) into a single, larger free block

• Otherwise, the freed block is just added to
the free list

CS61C L06 C Memory Management (17) Garcia, Spring 2005 © UCB

Choosing a block in malloc()

• If there are multiple free blocks of
memory that are big enough for some
request, how do we choose which
one to use?

• best-fit: choose the smallest block that
is big enough for the request

• first-fit: choose the first block we see
that is big enough

• next-fit: like first-fit but remember where
we finished searching and resume
searching from there

CS61C L06 C Memory Management (18) Garcia, Spring 2005 © UCB

Peer Instruction – Pros and Cons of fits

A. The con of first-fit is that it results
in many small blocks at the
beginning of the free list

B. The con of next-fit is it is slower
than first-fit, since it takes longer in
steady state to find a match

C. The con of best-fit is that it leaves
lots of tiny blocks

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L06 C Memory Management (19) Garcia, Spring 2005 © UCB

What’s this CS&E stuff good for?
•Only Sociology majors help real people?
•Computer technology (CS&E majors)
offers extraordinary aid to the disabled

Bionics:
Sensors in latex fingers
instantly register hot
and cold, and an electronic
interface in his artificial
limb stimulates the nerve
endings in his upper arm,
which then pass the
information to his brain.
The $3,000 system allows
his hand to feel pressure
and weight, so for the first
time since losing his arms
in a 1986 accident, he can
pick up a can of soda
without crushing it or
having it slip through his
fingers. One Digital Day

CS61C L06 C Memory Management (20) Garcia, Spring 2005 © UCB

Tradeoffs of allocation policies

•Best-fit: Tries to limit fragmentation
but at the cost of time (must examine
all free blocks for each malloc).
Leaves lots of small blocks (why?)
•First-fit: Quicker than best-fit (why?)
but potentially more fragmentation.
Tends to concentrate small blocks at
the beginning of the free list (why?)
•Next-fit: Does not concentrate small
blocks at front like first-fit, should be
faster as a result.

CS61C L06 C Memory Management (21) Garcia, Spring 2005 © UCB

And in conclusion…
•C has 3 pools of memory

• Static storage: global variable storage,
basically permanent, entire program run

• The Stack: local variable storage,
parameters, return address

• The Heap (dynamic storage): malloc()
grabs space from here, free() returns it.

•malloc() handles free space with
freelist. Three different ways to find free
space when given a request:

• First fit (find first one that’s free)
• Next fit (same as first, but remembers
where left off)

• Best fit (finds most “snug” free space)

