
CS61C L10 Introduction to MIPS: Decisions II (1) Garcia © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 10 – Introduction to MIPS
 Decisions II

EECS BEARS conf Thu/Fri! ⇒
 You’re welcome to attend any of

the research talks Thu morning, cool open
houses Thu aft or tutorials Fri morning. Past

students have asked to be told of this. Go!
www.eecs/BEARS2005/

CS61C L10 Introduction to MIPS: Decisions II (2) Garcia © UCB

Compiling C if into MIPS (1/2)
•Compile by hand

if (i == j) f=g+h;
else f=g-h;

•Use this mapping:
 f: $s0
 g: $s1
 h: $s2
 i: $s3
 j: $s4

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

CS61C L10 Introduction to MIPS: Decisions II (3) Garcia © UCB

Compiling C if into MIPS (2/2)

•Final compiled MIPS code:
 beq $s3,$s4,True # branch i==j
 sub $s0,$s1,$s2 # f=g-h(false)
 j Fin # goto Fin
True: add $s0,$s1,$s2 # f=g+h (true)
Fin:

Note: Compiler automatically creates labels to
handle decisions (branches).
Generally not found in HLL code.

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

•Compile by hand
if (i == j) f=g+h;
else f=g-h;

CS61C L10 Introduction to MIPS: Decisions II (4) Garcia © UCB

Review

•Memory is byte-addressable, but lw and sw
access one word at a time.
• A pointer (used by lw and sw) is just a

memory address, so we can add to it or
subtract from it (using offset).
• A Decision allows us to decide what to

execute at run-time rather than compile-time.
• C Decisions are made using conditional

statements within if, while, do while, for.
•MIPS Decision making instructions are the

conditional branches: beq and bne.
• New Instructions:

lw, sw, beq, bne, j

CS61C L10 Introduction to MIPS: Decisions II (5) Garcia © UCB

From last time: Loading, Storing bytes 1/2

• In addition to word data transfers
(lw, sw), MIPS has byte data transfers:
• load byte: lb
•store byte: sb
•same format as lw, sw

CS61C L10 Introduction to MIPS: Decisions II (6) Garcia © UCB

x

Loading, Storing bytes 2/2

•What do with other 24 bits in the 32
bit register?
•lb: sign extends to fill upper 24 bits

byte
loaded…is copied to “sign-extend”

This bit

xxxx xxxx xxxx xxxx xxxx xxxx zzz zzzz

• Normally don't want to sign extend chars
• MIPS instruction that doesn’t sign
extend when loading bytes:

load byte unsigned: lbu

CS61C L10 Introduction to MIPS: Decisions II (7) Garcia © UCB

Overflow in Arithmetic (1/2)

•Reminder: Overflow occurs when
there is a mistake in arithmetic due to
the limited precision in computers.
•Example (4-bit unsigned numbers):

+15 1111
 +3 0011
+18 10010

• But we don’t have room for 5-bit
solution, so the solution would be 0010,
which is +2, and wrong.

CS61C L10 Introduction to MIPS: Decisions II (8) Garcia © UCB

Overflow in Arithmetic (2/2)
•Some languages detect overflow (Ada),
some don’t (C)
•MIPS solution is 2 kinds of arithmetic
instructions to recognize 2 choices:

• add (add), add immediate (addi) and
subtract (sub) cause overflow to be detected

• add unsigned (addu), add immediate
unsigned (addiu) and subtract unsigned
(subu) do not cause overflow detection

•Compiler selects appropriate arithmetic
• MIPS C compilers produce
addu, addiu, subu

CS61C L10 Introduction to MIPS: Decisions II (9) Garcia © UCB

Two Logic Instructions
•2 lectures ago we saw add, addi, sub
•Here are 2 more new instructions
•Shift Left: sll $s1,$s2,2 #s1=s2<<2

• Store in $s1 the value from $s2 shifted 2
bits to the left, inserting 0’s on right; << in C

• Before: 0000 0002hex
0000 0000 0000 0000 0000 0000 0000 0010two

• After: 0000 0008hex
0000 0000 0000 0000 0000 0000 0000 1000two

• What arithmetic effect does shift left have?

•Shift Right: srl is opposite shift; >>

CS61C L10 Introduction to MIPS: Decisions II (10) Garcia © UCB

Loops in C/Assembly (1/3)
•Simple loop in C; A[] is an array of ints

do {
g = g + A[i];
i = i + j;

} while (i != h);

•Rewrite this as:
Loop: g = g + A[i];

i = i + j;
if (i != h) goto Loop;

•Use this mapping:
 g, h, i, j, base of A
$s1, $s2, $s3, $s4, $s5

CS61C L10 Introduction to MIPS: Decisions II (11) Garcia © UCB

Loops in C/Assembly (2/3)
•Final compiled MIPS code:
Loop: sll $t1,$s3,2 #$t1= 4*i
 add $t1,$t1,$s5 #$t1=addr A
 lw $t1,0($t1) #$t1=A[i]
 add $s1,$s1,$t1 #g=g+A[i]
 add $s3,$s3,$s4 #i=i+j
 bne $s3,$s2,Loop# goto Loop
 # if i!=h

•Original code:
Loop: g = g + A[i];

i = i + j;
if (i != h) goto Loop;

CS61C L10 Introduction to MIPS: Decisions II (12) Garcia © UCB

Loops in C/Assembly (3/3)
•There are three types of loops in C:

•while
•do… while
•for

•Each can be rewritten as either of the
other two, so the method used in the
previous example can be applied to
while and for loops as well.
•Key Concept: Though there are multiple
ways of writing a loop in MIPS, the key
to decision making is conditional branch

CS61C L10 Introduction to MIPS: Decisions II (13) Garcia © UCB

Inequalities in MIPS (1/3)
•Until now, we’ve only tested equalities
(== and != in C). General programs
need to test < and > as well.
•Create a MIPS Inequality Instruction:

• “Set on Less Than”
• Syntax: slt reg1,reg2,reg3
• Meaning:
if (reg2 < reg3)

reg1 = 1;
else reg1 = 0;

• In computereeze, “set” means “set to 1”,
“reset” means “set to 0”.

reg1 = (reg2 < reg3);

Same thing…

CS61C L10 Introduction to MIPS: Decisions II (14) Garcia © UCB

Inequalities in MIPS (2/3)
• How do we use this? Compile by hand:
if (g < h) goto Less; #g:$s0, h:$s1
• Answer: compiled MIPS code…
slt $t0,$s0,$s1 # $t0 = 1 if g<h
bne $t0,$0,Less # goto Less
 # if $t0!=0
 # (if (g<h)) Less:

• Branch if $t0 != 0 (g < h)
• Register $0 always contains the value 0, so
bne and beq often use it for comparison
after an slt instruction.
• A slt bne pair means if(… < …)goto…

CS61C L10 Introduction to MIPS: Decisions II (15) Garcia © UCB

Inequalities in MIPS (3/3)
•Now, we can implement <, but how do
we implement >, ≤ and ≥ ?
•We could add 3 more instructions,
but:

• MIPS goal: Simpler is Better

•Can we implement ≤ in one or more
instructions using just slt and the
branches?
•What about >?
•What about ≥?

CS61C L10 Introduction to MIPS: Decisions II (16) Garcia © UCB

Immediates in Inequalities

•There is also an immediate version of
slt to test against constants: slti

• Helpful in for loops

if (g >= 1) goto Loop

 Loop: . . .

slti $t0,$s0,1 # $t0 = 1 if
 # $s0<1 (g<1)
beq $t0,$0,Loop # goto Loop
 # if $t0==0

(if (g>=1))

C

M
I
P
S

An slt beq pair means if(… ≥ …)goto…

CS61C L10 Introduction to MIPS: Decisions II (17) Garcia © UCB

What about unsigned numbers?

•Also unsigned inequality instructions:
sltu, sltiu

…which sets result to 1 or 0 depending
on unsigned comparisons
•What is value of $t0, $t1?
($s0 = FFFF FFFAhex, $s1 = 0000 FFFAhex)

 slt $t0, $s0, $s1

sltu $t1, $s0, $s1

CS61C L10 Introduction to MIPS: Decisions II (18) Garcia © UCB

MIPS Signed vs. Unsigned – diff meanings!

•MIPS Signed v. Unsigned is an
“overloaded” term

•Do/Don't sign extend
(lb, lbu)

•Don't overflow
(addu, addiu, subu, multu, divu)

•Do signed/unsigned compare
(slt, slti/sltu, sltiu)

CS61C L10 Introduction to MIPS: Decisions II (19) Garcia © UCB

Administrivia

•Proj1 due in 9 days – start EARLY!
• Out on Wed, due Friday [extended date]
• The following hw (smaller) still due Wed

•We have a midterm & review date
• Review: Sun 2005-03-06, Loc/Time TBA
• Midterm: Mon 2005-03-07, Loc/Time TBA
• DSP or Conflicts? Email acarle@cs

•Dan’s OH cancelled tomorrow
• Go to the BEARS conference!

CS61C L10 Introduction to MIPS: Decisions II (20) Garcia © UCB

Example: The C Switch Statement (1/3)

•Choose among four alternatives
depending on whether k has the value
0, 1, 2 or 3. Compile this C code:

switch (k) {
 case 0: f=i+j; break; /* k=0 */
 case 1: f=g+h; break; /* k=1 */
 case 2: f=g–h; break; /* k=2 */
 case 3: f=i–j; break; /* k=3 */
}

CS61C L10 Introduction to MIPS: Decisions II (21) Garcia © UCB

Example: The C Switch Statement (2/3)

•This is complicated, so simplify.
•Rewrite it as a chain of if-else
statements, which we already know
how to compile:
if(k==0) f=i+j;
 else if(k==1) f=g+h;
 else if(k==2) f=g–h;
 else if(k==3) f=i–j;

•Use this mapping:
 f:$s0, g:$s1, h:$s2,
i:$s3, j:$s4, k:$s5

CS61C L10 Introduction to MIPS: Decisions II (22) Garcia © UCB

Example: The C Switch Statement (3/3)
• Final compiled MIPS code:
 bne $s5,$0,L1 # branch k!=0
 add $s0,$s3,$s4 #k==0 so f=i+j
 j Exit # end of case so Exit
L1: addi $t0,$s5,-1 # $t0=k-1
 bne $t0,$0,L2 # branch k!=1
 add $s0,$s1,$s2 #k==1 so f=g+h
 j Exit # end of case so Exit
L2: addi $t0,$s5,-2 # $t0=k-2
 bne $t0,$0,L3 # branch k!=2
 sub $s0,$s1,$s2 #k==2 so f=g-h
 j Exit # end of case so Exit
L3: addi $t0,$s5,-3 # $t0=k-3
 bne $t0,$0,Exit # branch k!=3
 sub $s0,$s3,$s4 #k==3 so f=i-j
Exit:

CS61C L10 Introduction to MIPS: Decisions II (23) Garcia © UCB

Peer Instruction

We want to translate *x = *y into MIPS
(x, y ptrs stored in: $s0 $s1)
A: add $s0, $s1, $zero
B: add $s1, $s0, $zero
C: lw $s0, 0($s1)
D: lw $s1, 0($s0)
E: lw $t0, 0($s1)
F: sw $t0, 0($s0)
G: lw $s0, 0($t0)
H: sw $s1, 0($t0)

1: A
2: B
3: C
4: D
5: E→F
6: E→G
7: F→E
8: F→H
9: H→G
0: G→H

CS61C L10 Introduction to MIPS: Decisions II (24) Garcia © UCB

What C code properly fills in
the blank in loop below?

Peer Instruction

do {i--;} while(__);

Loop:addi $s0,$s0,-1 # i = i - 1
 slti $t0,$s1,2 # $t0 = (j < 2)
 beq $t0,$0 ,Loop # goto Loop if $t0 == 0
 slt $t0,$s1,$s0 # $t0 = (j < i)
 bne $t0,$0 ,Loop # goto Loop if $t0 != 0

1: j < 2 && j < i
2: j ≥ 2 && j < i
3: j < 2 && j ≥ i
4: j ≥ 2 && j ≥ i
5: j > 2 && j < i
6: j < 2 || j < i
7: j ≥ 2 || j < i
8: j < 2 || j ≥ i
9: j ≥ 2 || j ≥ i
0: j > 2 || j < i

($s0=i, $s1=j)

CS61C L10 Introduction to MIPS: Decisions II (25) Garcia © UCB

“And in conclusion…”
• In order to help the conditional
branches make decisions concerning
inequalities, we introduce a single
instruction: “Set on Less Than”called
slt, slti, sltu, sltiu
•One can store and load (signed and
unsigned) bytes as well as words
•Unsigned add/sub don’t cause overflow
•New MIPS Instructions:
 sll, srl

slt, slti, sltu, sltiu
addu, addiu, subu

