
CS61C L11 Introduction to MIPS: Procedures I (1) Garcia © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 11 – Introduction to MIPS
 Procedures I

Smart crumble w/pressure ⇒
 A study showed that students

with a “high working-memory [short-term]
(HWM) capacity” (prob. most Cal students)

crack under pressure, but LWM students
didn’t. Under pressure, HWM = LWM.

www.livescience.com/humanbiology/050209_under_pressure.html
CS61C L11 Introduction to MIPS: Procedures I (2) Garcia © UCB

Administrivia
•High-pressure midterm evaluations :-)
•Review
- Sun, 2005-03-06, 2pm @ 10 Evans

•Midterm
- Mon, 2005-03-07, 7-10pm @ 1 Le Conte

•Dan’s before-class graphics videos:
www.siggraph.org/publications/video-review/SVR.html

•Project 1 out (make sure to work on it
this weekend), due next Friday
•An easy HW4 will follow, due Wed after

CS61C L11 Introduction to MIPS: Procedures I (4) Garcia © UCB

Example: The C Switch Statement (3/3)
• Final compiled MIPS code:
 bne $s5,$0,L1 # branch k!=0
 add $s0,$s3,$s4 #k==0 so f=i+j
 j Exit # end of case so Exit
L1: addi $t0,$s5,-1 # $t0=k-1
 bne $t0,$0,L2 # branch k!=1
 add $s0,$s1,$s2 #k==1 so f=g+h
 j Exit # end of case so Exit
L2: addi $t0,$s5,-2 # $t0=k-2
 bne $t0,$0,L3 # branch k!=2
 sub $s0,$s1,$s2 #k==2 so f=g-h
 j Exit # end of case so Exit
L3: addi $t0,$s5,-3 # $t0=k-3
 bne $t0,$0,Exit # branch k!=3
 sub $s0,$s3,$s4 #k==3 so f=i-j
Exit:

Removing breaks does NOT translate to
removing jumps in this code… (my bad)

CS61C L11 Introduction to MIPS: Procedures I (5) Garcia © UCB

C functions
main() {
int i,j,k,m;
...
i = mult(j,k); ...
m = mult(i,i); ...

}

/* really dumb mult function */

int mult (int mcand, int mlier){
int product;

 product = 0;
while (mlier > 0) {
 product = product + mcand;
 mlier = mlier -1; }
return product;
}

What information must
compiler/programmer
keep track of?

What instructions can
accomplish this?

CS61C L11 Introduction to MIPS: Procedures I (6) Garcia © UCB

Function Call Bookkeeping

•Registers play a major role in
keeping track of information for
function calls.
•Register conventions:
•Return address $ra
•Arguments $a0, $a1, $a2, $a3
•Return value $v0, $v1
• Local variables $s0, $s1, … , $s7

•The stack is also used; more later.
CS61C L11 Introduction to MIPS: Procedures I (7) Garcia © UCB

Instruction Support for Functions (1/6)
 ... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {

return x+y;
}

 address
1000
1004
1008
1012
1016
2000
2004

C

M
I
P
S

In MIPS, all instructions
are 4 bytes, and stored in
memory just like data. So
here we show the
addresses of where the
programs are stored.

CS61C L11 Introduction to MIPS: Procedures I (8) Garcia © UCB

Instruction Support for Functions (2/6)
 ... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {

return x+y;
}

 address
1000 add $a0,$s0,$zero # x = a
1004 add $a1,$s1,$zero # y = b
1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #jump to sum
1016 ...
2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instruction

C

M
I
P
S

CS61C L11 Introduction to MIPS: Procedures I (9) Garcia © UCB

Instruction Support for Functions (3/6)
 ... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {

return x+y;
}

2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instruction

C

M
I
P
S

•Question: Why use jr here? Why not
simply use j?
• Answer: sum might be called by many

functions, so we can’t return to a fixed
place. The calling proc to sum must be able
to say “return here” somehow.

CS61C L11 Introduction to MIPS: Procedures I (10) Garcia © UCB

Instruction Support for Functions (4/6)
• Single instruction to jump and save return

address: jump and link (jal)
• Before:

1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #goto sum

• After:
1008 jal sum # $ra=1012,goto sum
•Why have a jal? Make the common case fast:

function calls are very common. Also, you don’t
have to know where the code is
 loaded into memory with jal.

CS61C L11 Introduction to MIPS: Procedures I (11) Garcia © UCB

Instruction Support for Functions (5/6)

•Syntax for jal (jump and link) is
same as for j (jump):

jal label

• � jal should really be called laj for
“link and jump”:
•Step 1 (link): Save address of next
instruction into $ra (Why next
instruction? Why not current one?)
•Step 2 (jump): Jump to the given label

CS61C L11 Introduction to MIPS: Procedures I (12) Garcia © UCB

Instruction Support for Functions (6/6)
•Syntax for jr (jump register):

jr register

• Instead of providing a label to jump to,
the jr instruction provides a register
which contains an address to jump to.
•Only useful if we know exact address to
jump to.
•Very useful for function calls:

•jal stores return address in register ($ra)
•jr $ra jumps back to that address

CS61C L11 Introduction to MIPS: Procedures I (13) Garcia © UCB

Nested Procedures (1/2)
int sumSquare(int x, int y) {

return mult(x,x)+ y;
}

•Something called sumSquare, now
sumSquare is calling mult.
•So there’s a value in $ra that
sumSquare wants to jump back to, but
this will be overwritten by the call to
mult.
•Need to save sumSquare return
address before call to mult.

CS61C L11 Introduction to MIPS: Procedures I (14) Garcia © UCB

Nested Procedures (2/2)
• In general, may need to save some
other info in addition to $ra.
•When a C program is run, there are 3
important memory areas allocated:
•Static: Variables declared once per
program, cease to exist only after
execution completes. E.g., C globals
•Heap: Variables declared dynamically
•Stack: Space to be used by procedure
during execution; this is where we can
save register values

CS61C L11 Introduction to MIPS: Procedures I (15) Garcia © UCB

C memory Allocation review

0

∞
Address

Code Program

Static Variables declared
once per program

Heap Explicitly created space,
e.g., malloc(); C pointers

Stack Space for saved
procedure information$sp

stack
pointer

CS61C L11 Introduction to MIPS: Procedures I (16) Garcia © UCB

Using the Stack (1/2)

•So we have a register $sp which
always points to the last used space
in the stack.
•To use stack, we decrement this
pointer by the amount of space we
need and then fill it with info.
•So, how do we compile this?

int sumSquare(int x, int y) {
return mult(x,x)+ y;

}

CS61C L11 Introduction to MIPS: Procedures I (17) Garcia © UCB

Using the Stack (2/2)
•Hand-compile
sumSquare:
 addi $sp,$sp,-8 # space on stack
 sw $ra, 4($sp) # save ret addr
 sw $a1, 0($sp) # save y

 add $a1,$a0,$zero # mult(x,x)
 jal mult # call mult

 lw $a1, 0($sp) # restore y
 add $v0,$v0,$a1 # mult()+y
 lw $ra, 4($sp) # get ret addr
 addi $sp,$sp,8 # restore stack
 jr $ra

mult: ...

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

“push”

“pop”

CS61C L11 Introduction to MIPS: Procedures I (18) Garcia © UCB

Steps for Making a Procedure Call

1) Save necessary values onto stack.
2) Assign argument(s), if any.
3) jal call
4) Restore values from stack.

CS61C L11 Introduction to MIPS: Procedures I (19) Garcia © UCB

Rules for Procedures

•Called with a jal instruction, returns
with a jr $ra
•Accepts up to 4 arguments in $a0,
$a1, $a2 and $a3
•Return value is always in $v0 (and if
necessary in $v1)
•Must follow register conventions
(even in functions that only you will
call)! So what are they?

CS61C L11 Introduction to MIPS: Procedures I (20) Garcia © UCB

Basic Structure of a Function

entry_label:
addi $sp,$sp, -framesize
sw $ra, framesize-4($sp) # save $ra
save other regs if need be

...

restore other regs if need be
lw $ra, framesize-4($sp) # restore $ra
addi $sp,$sp, framesize
jr $ra

Epilogue

Prologue

Body (call other functions…)
ra

memory

CS61C L11 Introduction to MIPS: Procedures I (21) Garcia © UCB

MIPS Registers

 The constant 0 $0 $zero
Reserved for Assembler $1 $at
Return Values $2-$3 $v0-$v1
Arguments $4-$7 $a0-$a3
Temporary $8-$15 $t0-$t7
Saved $16-$23 $s0-$s7
More Temporary $24-$25 $t8-$t9
Used by Kernel $26-27 $k0-$k1
Global Pointer $28 $gp
Stack Pointer $29 $sp
Frame Pointer $30 $fp
Return Address $31 $ra

(From COD 3rd Ed. green insert)
Use names for registers -- code is clearer!

CS61C L11 Introduction to MIPS: Procedures I (22) Garcia © UCB

Other Registers

•$at: may be used by the assembler at
any time; unsafe to use
•$k0-$k1: may be used by the OS at
any time; unsafe to use
•$gp, $fp: don’t worry about them
•Note: Feel free to read up on $gp and
$fp in Appendix A, but you can write
perfectly good MIPS code without
them.

CS61C L11 Introduction to MIPS: Procedures I (23) Garcia © UCB

Peer Instruction

When translating this to MIPS…
A. We COULD copy $a0 to $a1 (& then

not store $a0 or $a1 on the stack) to
store n across recursive calls.

B. We MUST save $a0 on the stack since
it gets changed.

C. We MUST save $ra on the stack since
we need to know where to return to…

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

int fact(int n){
 if(n == 0) return 1; else return(n*fact(n-1));}

CS61C L11 Introduction to MIPS: Procedures I (24) Garcia © UCB

What C code properly fills in
the blank in loop below?

Peer Instruction

do {i--;} while(__);

Loop:addi $s0,$s0,-1 # i = i - 1
 slti $t0,$s1,2 # $t0 = (j < 2)
 beq $t0,$0 ,Loop # goto Loop if $t0 == 0
 slt $t0,$s1,$s0 # $t0 = (j < i)
 bne $t0,$0 ,Loop # goto Loop if $t0 != 0

1: j < 2 && j < i
2: j ≥ 2 && j < i
3: j < 2 && j ≥ i
4: j ≥ 2 && j ≥ i
5: j > 2 && j < i
6: j < 2 || j < i
7: j ≥ 2 || j < i
8: j < 2 || j ≥ i
9: j ≥ 2 || j ≥ i
0: j > 2 || j < i

($s0=i, $s1=j)

CS61C L11 Introduction to MIPS: Procedures I (25) Garcia © UCB

“And in Conclusion…”
• Functions called with jal, return with jr $ra.
• The stack is your friend: Use it to save

anything you need. Just be sure to leave it the
way you found it.
• Instructions we know so far

Arithmetic: add, addi, sub, addu, addiu, subu
Memory: lw, sw
Decision: beq, bne, slt, slti, sltu, sltiu
Unconditional Branches (Jumps): j, jal, jr

• Registers we know so far
• All of them!

