CS61C : Machine Structures

Lecture 11 — Introduction to MIPS
Procedures |

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Smart crumble w/pressure =

s B

A study showed that students
with a “high working-memory [short-term] ==)
(HWM) capacity” (prob. most Cal students)

crack under pressure, but LWM students
didn’t. Under pressure, HWM = LWM.

www.livescience.com/humanbiology/050209_under_pressure.html

CSB1C L11 Introduction to MIPS: Procedures I (1)

Garcia ©UCB

Example: The C Switch Statement (3/3)
« Final compiled MIPS code:

bne $s5,$0,L1
add $s0,$s3,$s4
j it

j Exi

Ll: addi $t0,$s5,-1
bne $t0,$0,L2
add $s0,8$sl1,$s2
j Exit

L2: addi $t0,$s5,-2
bne $t0,$0,L3
sub $s0,$sl,$s2
j Exit

L3: addi $t0,$s5,-3
bne $t0,$0,Exit
sub $s0,$s3,$s4

Exit:
Removing breaks does NOT translate to

removing jumps in this code... (my bad)

CSB1C L11 Introduction to MIPS: Procedures I (4)

Garcia ©UCB

Function Call Bookkeeping

*Registers play a major role in
keeping track of information for
function calls.

*Register conventions:
*Return address $ra

* Arguments $a0, $al, $a2, $a3
* Return value $v0, Svl
»Local variables $s0, $s1, .. , $s7

*The stack is also used; more later.

CSB1C L11 Introduction to MIPS: Procedures 1 (6)

Garcia ©UCB

Administrivia
*High-pressure midterm evaluations :-)
* Review
- Sun, 2005-03-06, 2pm @ 10 Evans
* Midterm
- Mon, 2005-03-07, 7-10pm @ 1 Le Conte

eDan’s before-class sg;raphics videos:
VI

www.siggraph.org/publications/video-review/SVR.html

«Project 1 out (make sure to work on it
this weekend), due next Friday

* An easy HW4 will follow, due Wed after

Garcia ©UCB

C functions

main() {

int i,3,k,m; What information must
- compiler/programmer

keep track of?

mult(j, k); ...
mult(i,i); ...

1
m

}

int mult (int mcand, int mlier) {

int product;

product = 0;

while (mlier > 0) {
product = product + mcand;
mlier = mlier -1; }
fet“rn product; What instructions can

accomplish this?

Garcia ©UCB

C

Instruction Support for Functions (1/6)
sum(a,b) ;...

int sum(int x, int y) {
return x+y;

»w o -

M address

In MIPS, all instructions
are 4 bytes, and stored in
memory just like data. So
here we show the
addresses of where the
programs are stored.

Garcia ©UCB

Instruction Support for Functions (2/6)
c } sum(a,b) ;...

int sum(int x, int y) {
return x+y;

M address

| 1000 add $a0,$s0,$zero

p 1004 add S$al,$sl,Szero
1008 addi $ra,$zero,1016

S 1012 ;5 sum

2000 sum: add $v0,$a0,$al
2004 jr Sra new instruction

g CSB1C L11 Introduction to MIPS: Procedures 1 (8) Garcia © ucB

Instruction Support for Functions (4/6)

+ Single instruction to jump and save return
address: jump and link (Jal)

* Before:

1008 addi $ra, $zero,1016
1012 j sum

 After:
1008 jal sum

*« Why have a ja1? Make the common case fast:
function calls are very common. Also, you don’t

have to know where the code is
loaded into memory with jal.

@ CSB1C L1 Introduction to MIPS: Procedures | (10) Garcla ©UCB

Instruction Support for Functions (3/6)
c } sum(a,b) ;...

int sum(int x, int y) {

) return x+y;

M . Question: Why use jr here? Why not
l simply use j?

¢ Answer: sum might be called by many
functions, so we can’t return to a fixed
Place. The calling proc to sum must be able
0 say “return here” somehow.

$v0,$a0, $al

Garcia ©UCB

Instruction Support for Functions (5/6)

«Syntax for jal (jump and link) is
same as for j (iump?:

jal label
¢ jal should really be called 1aj for
"-Ilink and jump”:

+ Step 1 (link): Save address of next
instruction into $ra (Why next
instruction? Why not current one?)

+ Step 2 (jump): Jump to the given label

Instruction Support for Functions (6/6)
«Syntax for jr (jump register):
jr register

*Instead of providing a label to jump to,
the jr instruction provides a register
which contains an address to jump to.

« Only useful if we know exact address to
jump to.

«Very useful for function calls:
- jal stores return address in register ($ra)
*jr $ra jumps back to that address

CSB1C L11 Introduction to MIPS: Procedures | (12) Garcla ©UCB

@ CSB1C L1 Introduction to MIPS: Procedures | (11) Garcla ©UCB

Nested Procedures (1/2)

int sumSquare(int x, int y) {
return mult(x,x)+ y;

*Something called sumSquare, now
sumSquare is calling mult.

*So there’s a value in $ra that
sumSquare wants to jump back to, but
this will be overwritten by the call to
mult.

*Need to save sumSquare return
address before call to mult.

@ CSB1C L1 Introduction to MIPS: Procedures | (13) Garcla ©UCB

Nested Procedures (2/2)

+In general, may need to save some
other info in addition to $ra.

*When a C program is run, there are 3
important memory areas allocated:

- Static: Variables declared once per
program, cease to exist only after
execution completes. E.g., C globals

» Heap: Variables declared dynamically

- Stack: Space to be used by procedure
during execution; this is where we can
save register values

Garcia ©UCB

Using the Stack (1/2)

*So we have a register $sp which
always points to the last used space
in the stack.

*To use stack, we decrement this
pointer by the amount of space we
need and then fill it with info.

*So, how do we compile this?

int sumSquare (int x, int y) {
return mult(x,x)+ y;

}

Garcia ©UCB

Steps for Making a Procedure Call

1) Save necessary values onto stack.
2) Assign argument(s), if any.

3) jal call

4) Restore values from stack.

Garcia ©UCB

C memory Allocation review

Addregos S ¢ d
pace for save
$sp Stack procedure information
stack !
pointer 4
Explicitly created space,
Heap e.g., malloc(); C pointers
Static Variables declared
once per program
0 Code | Program

g CSBIC L11 Introduction to MIPS: Procedures I (15) Garcia © ucB

Using the Stack (2/2)

'Hand-compile int sumSquare(int x, int y) {
return mult(x,x)+ y; }
sumSquare:
« ,» addi $sp,$sp,-8
push” oy S$ra, 4($sp)
sw $al, 0($sp)

add $al,$a0,$zero
jal mult

1w $al, 0(S$sp)

add $v0,$v0,Sal

1w S$ra, 4 ($sp)
pop” addi $sp,$sp,8
jr $ra

]

mult:

g CSBIC L11 Introduction to MIPS: Procedures I (17) Garcia @ uc8

Rules for Procedures

«Called with a jal instruction, returns
witha jr $ra

¢ Accepts up to 4 arguments in $a0,
$al, $a2 and $a3

*Return value is always in $v0 (and if
necessary in $v1)

*Must follow register conventions

(even in functions that only you will
call)! So what are they?

g CSBIC L11 Introduction to MIPS: Procedures I (19) Garcia @ ucB

Basic Structure of a Function

Prologue

entry label:

addi $sp,$sp, -framesize
sw $ra, framesize-4($sp)
save other regs if need be

Body --- (call other functions...)

Epilogue
restore other regs if need be
lw $ra, framesize-4($sp)
addi $sp,$sp, framesize
jr $ra

g CSBIC L11 Introduction to MIPS: Procedures | (20) Garcia © ucB

memory

Other Registers
*$at: may be used by the assembler at
any time; unsafe to use

*$k0-5k1: may be used by the OS at
any time; unsafe to use

*Sgp, $£p: don’t worry about them
*Note: Feel free to read up on $gp and

$fp in Appendix A, but you can write
{Jﬁrfectly good MIPS code without
em.

g CSBIC L11 Introduction to MIPS: Procedures | (22) Garcia @ ucB

Peer Instruction

Loop:addi $s0,$s0,-1
slti $t0,$s1,2
beq $t0,$0 ,Loop
slt $t0,$s1,5s0
bne $t0,$0 ,Loop

—s —= 1: <2 & j <1
($s0=1, $s1=]3) 2: % 22 & ?, <i
3: 3268 321

4: 322 && 721

5: 3 >2 &8 3<1i

T 6: 3 <2 3<i

What C code properly fillsin |7: 3 2 2 3<i
the blank in loop below? g; 1¢ % 12 i
do {i--;} while(_); [0: 3532 |[3%}
G816 L nrductin to PS: Procedues 129 -

MIPS Registers

The constant 0 $0 $zero
Reserved for Assembler $1 $at
Return Values $2-$3 $v0-$v1
Arguments $4-87 $a0-$a3
Temporary $8-$15 $t0-$t7
Saved $16-$23 $s0-$s7
More Temporary $24-$25 $t8-$t9
Used by Kernel $26-27 $k0-$k1
Global Pointer $28 $gp
Stack Pointer $29 $sp
Frame Pointer $30 $fp
Return Address $31 $ra

(From COD 3¢ Ed. green insert)
Use names for registers -- code is clearer!

Peer Instruction

int fact(int n){
if(n == 0) return 1; else return(n*fact(n-1));}

When translating this to MIPS...

A. We COULD copy $a0 to $al (& then ;
not store $a0 or $al on the stack) to 3.
store n across recursive calls. rp

B. We MUST save $a0 on the stack since |5:
it gets changed. 6:

C. We MUST save $ra on the stack since gf

‘ we need to know where to return to... :

“And in Conclusion...”
¢ Functions called with jal, return with jr $ra.

* The stack is your friend: Use it to save
anything you need. Just be sure to leave it the
way you found it.

¢ Instructions we know so far

Arithmetic: add, addi, sub, addu, addiu, subu
Memory: 1w, sw

Decision: beq, bne, slt, slti, sltu, sltiu
Unconditional Branches (Jumps): j, jal, jr

* Registers we know so far
+ All of them!

g CSBIC L11 Introduction to MIPS: Procedures | (25) Garcia @ ucB

