CS61C : Machine Structures

Lecture 12 — Introduction to MIPS
Procedures I, Logical and Shift Ops

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia
Digital Evolution @ MSU =
Devolab allows researchers

to study self-replicating computer
programs (Agent Smith?), and they’ve
seen them adapt & being creative! g

Q http://devolab.cse.msu.edu/

CS61C L12 Introduction to MIPS: Procedures Il logical & shift ops (1) Garcla ©UCB

Register Conventions (1/4)
« CalleR: the calling function
« CalleE: the function being called

*When callee returns from executing,
the caller needs to know which
registers may have changed and
which are guaranteed to be unchanged.

*Register Conventions: A set of
generally accepted rules as to which
registers will be unchanged after a
procedure call (jal) and which may be
changed.

Review
¢ Functions called with jal, return with jr $ra.

« The stack is your friend: Use it to save
anything you need. Just be sure to leave it the
way you found it.

¢ Instructions we know so far

Arithmetic: add, addi, sub, addu, addiu, subu
Memory: 1w, sw
Decision: beq, bne, slt, slti, sltu, sltiu
Unconditional Branches (Jumps): j, jal, jr
* Registers we know so far
« All of them!
Q » There are CONVENTIONS when calling procedures!

CS61C L12 Introduction to MIPS: Procedures Il logical & shift ops (2) Garcla ©UCB

Register Conventions (2/4) - saved
*$0: No Change. Always 0.

*$s0-$s7: Restore if you change. Very
important, that’s why they’re called
saved registers. If the callee changes
these in any way, it must restore the
original values before returning.

* $sp: Restore if you change. The stack
ointer must point to the same place
efore and after the jal call, or else

the caller won’t be able to restore
values from the stack.

*HINT -- All saved registers start with S!

Q CS61C L12 Introduction to MIPS: Procedures Il logical & shift ops (3) Garcla ©UCB

Register Conventions (3/4) - volatile

*$ra: Can Change. The jal call itself
will change this register. Caller needs
to save on stack if nested call.

*$v0-$v1: Can Change. These will
contain the new returned values.

*$a0-$a3: Can change. These are
volatile argument régisters. Caller
needs to save if they'll need them
after the call.

*$t0-$t9: Can change. That’s why
they’re called temporar){: any
Frocedure may change them at an

ime, Caller needs to'save if they’l
2 need them afterwards.

CS61C L12 Introduction to MIPS: Procedures Il logical & shift ops (5) Garcla ©UCB

CS61C L12 Introduction to MIPS: Procedures Il logical & shift ops (4) Garcla ©UCB

Register Conventions (4/4)

*What do these conventions mean?

« If function R calls function E, then
function R must save any temporary
registers that it may be using onto the
stack before making a jal call.

* Function E must save any S (saved)
registers it intends to use before
garbling up their values

* Remember: Caller/callee need to save
only temporary/saved registers they are
using, not all registers.

Q CS61C L12 Introduction to MIPS: Procedures Il logical & shift ops (6) Garcla ©UCB

Parents leaving for weekend analogy (1/5)

«Parents (main) leaving for weekend

*They (caller) give keys to the house
to kid (callee) with the rules
(calling conventions):

* You can trash the temporary room(s),
like the den and basement (registers)
if you want, we don’t care about it

+ BUT you’d better leave the rooms
(registers) that we want to save for the
guests untouched. “these rooms better
look the same when we return!”

Who hasn’t heard this in their life?

CSB1C L12 Introduction to MIPS: Procedures Il,logical & shift ops (1) Garcla ©UCB

Parents leaving for weekend analogy (3/5)

*Same scenario, except before parents
return and kid replaces saved rooms...

<Kid (callee) has left valuable stuff
(data) all over.

+Kid’s friend (another callee) wants
the house for a party when the kid is
away

+ Kid knows that friend might trash the
place destroying valuable stuff!

+ Kid remembers rule parents taught and
now becomes the “heavy” (caller),
instructing friend (callee) on good
g rules (conventions) gf house.

cse1c L1z \mmduclnn(u MIPS: Procedures I, logical & shift ps

Garcia ©UCB

Parents leaving for weekend analogy (5/5)

«Friend now “owns” rooms (registers)

¢ Friend wants to use the saved rooms
for a wild, wild party (computation)

*What does friend (callee) do?

* Friend takes what was in these rooms
and puts them in the garage (memory)

* Friend throws the party, trashes
everything (except garage)

* Friend restores the rooms the kid wanted
saved after the party by replacing the
items from the garage (memory) back into

g those saved rooms

CSB1C L12 Introduction to MIPS: Procedures Il,logical & shift ops (11) Garcla ©UCB

Parents leaving for weekend analogy (2/5)

«Kid now “owns” rooms (registers)

*Kid wants to use the saved rooms for
a wild, wild party (computation)

*What does kid (callee) do?

+ Kid takes what was in these rooms and
puts them in the garage (memory)

+ Kid throws the party, trashes everything
(except garage, who goes there?)

« Kid restores the rooms the parents
wanted saved after the party by
replacing the items from the garage
g (memory) back into those saved rooms

CSB1C L12 Introduction to MIPS: Procedures Il,logical & shift ops (8) Garcla ©UCB

Parents leaving for weekend analogy (4/5)

«If kid had data in temporary rooms
(which were going to be trashed),
there are three options:

* Move items directly to garage (memory)

* Move items to saved rooms whose
contents have already been moved to
the garage (memory)

+ Optimize lifestyle (code) so that the
amount you’ve got to shlep stuff back
and forth from garage (memory) is
minimized

2 s Otherwise: “Dude, where’s my data?!”

CSB1C L12 Introduction to MIPS: Procedures Il,logical & shift ops (10) Garcla ©UCB

Bitwise Operations

« Up until now, we’ve done arithmetic (add,
sub,addi), memory access (1w and sw),
and branches and jumps.

« All of these instructions view contents of
register as a single quantity (such as a
signhed or unsigned |nteger¥

* New Perspective: View register as 32 raw
bits rather than as a single 32-bit number

* Since registers are composed of 32 bits, we
may want to access individual bits (or
groups of bits) rather than the whole.

« Introduce two new classes of instructions:

- Logical & Shift Ops
(CS61C L12 Introduction to MIPS: Procedures I, logical & shift ops (13) Garcia © UCB

Logical Operators (1/3)

*Two basic logical operators:
+ AND: outputs 1 only if both inputs are 1
* OR: outputs 1 if at least one input is 1
*Truth Table: standard table listing all

possible combinations of inputs and
resultant output for each. E.g.,

A B AANDB | AORB
0 0 0 0
0 1 0 1
1 0 0 1

Logical Operators (3/3)

¢Instruction Names:
-and, or: Both of these expect the third
argument to be a register

-andi, ori: Both of these expect the
third argument to be an immediate

*MIPS Logical Operators are all
bitwise, meaning that bit 0 of the
output is produced by the respective
bit 0’s of the inputs, bit 1 by the bit
1’s, etc.

+C: Bitwise ANDis & (e.9.,z = x & y;)

2 , < C: Bitwise ORis | (e.9.,z = x | y/)

CS61C L12 Introduction to MIPS: Procedures Il logical & shift ops (16) Garcla ©UCB

Uses for Logical Operators (2/3)

*The second bitstring in the example is
called a mask. Itis used to isolate the
rightmost 12 bits of the first bitstring
by masking out the rest of the string
(e.g. setting it to all 0s).

*Thus, the and operator can be used
to set certain portions of a bitstring to
0s, while leaving the rest alone.

« In particular, if the first bitstring in the
above example were in $t0, then the
following instruction would mask it:

andi $t0,$t0,0xFFF

Logical Operators (2/3)

Logical Instruction Syntax:
1 234
* where
1) operation name
2) register that will receive value
3) first operand (register)
4) second operand (register) or
immediate (numerical constant)

eln 2g_eneral, can define them to acgept
> Z'inputs, but in the case of MIP
assembly, these accept exactly 2
inputs and produce 1 output

Q « Again, rigid syntax, simpler hardware

CS61C L12 Introduction to MIPS: Procedures Il logical & shift ops (15) Garcla ©UCB

Uses for Logical Operators (1/3)

*Note that anding a bit with 0 produces a
0 at the output while anding a bit with 1
produces the original bit.

*This can be used to create a mask.
* Example:
1011 0110 1010 0100 0011|1101 1001 1010
mask:0000 0000 0000 0000 0000|1111 1111 1111
* The result of anding these:

0000 0000 0000 0000 0000(1101 1001 1010
mask last 12 bits

@ CS61C L12 Introduction to MIPS: Procedures Il logical & shift ops (18) Garcla ©UCB

@ CS61C L12 Introduction to MIPS: Procedures Il logical & shift ops (17) Garcla ©UCB

Uses for Logical Operators (3/3)

«Similarly, note that oring a bit with 1
produces a 1 at the output while
oring a bit with 0 produces the
original bit.

*This can be used to force certain bits
of a string to 1s.
» For example, if $t0 contains
0x12345678, then after this instruction:
ori $t0, $t0, OxFFFF

*... $t0 contains 0x1234FFFF (e.g. the
high-order 16 bits are untouched, while
@ the low-order 16 bits are forced to 1s).

CS61C L12 Introduction to MIPS: Procedures Il logical & shift ops (19) Garcla ©UCB

Shift Instructions (1/4)
* Move (shift) all the bits in a word to the
left or right by a number of bits.
+ Example: shift right by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0118
+ Example: shift left by 8 bits
0001 00100011 0100 0101 0110 0111 1000

g 0011 0100 0101 0110 0111 1000 0000 0000

CSB1C L12 Introduction to MIPS: Procedures Il logical & shift ops (20) Garcla ©UCB

Shift Instructions (3/4)

« Example: shift right arith by 8 bits
‘9001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

« Example: shift right arith by 8 bits
-1001 0010 0011 0100 0101 0110 0111 1000

'S 'S

1111 1111 1001 0010 0011 0100 0101 0110

g CS6IC L12 Introduction to MIPS: Procedures Il ogical & shift ops (22) Garcla ©UCB

Peer Instruction

r: ... # R/W $s0,$v0,$t0,$a0,$sp, $ra, mem
PUSH REGISTER(S) TO STACK?

Call e

R/W $s0,%$v0,$t0,%$a0,$sp, $ra,mem
Return to caller of r

jal e
i£.$ra
e:

. # R/W $s0,$v0,$t0,$a0,$sp,$ra, mem
jr $ra # Return to r

What does r have to push on the stack before “jal e”?

of ($s0,$sp,$v0,$t0,$a0,%ra)
of ($s0,$sp,$v0,5t0,$a0,$ra)
of ($s0,$sp,$v0,$t0,$a0,$ra)
($s0,$sp,$v0,$t0,35a0,$ra)
of ($s0,$sp,$v0,$t0,$a0,$ra)
of ($s0,$sp,$v0,$t0,$a0,$ra)
of ($s0,$sp,$v0,$t0,%$a0,$ra)

oo WNE
o
Hh

n&i?\lm U WN R

CSB1C L12 Introduction to MIPS: Procedures Il logical & shift ops (24) Garcla ©UCB

Shift Instructions (2/4)

« Shift Instruction Syntax:
1 234
» where
1) operation name
2) register that will receive value
3) first operand (register)
4) shift amount (constant < 32)

* MIPS shift instructions:

1. s11 (shift left logical): shifts left and fills
emptied bits with 0s

2. srl (shift right logical): shifts right and fills
emptied bits with 0s

3. sra (shift right arithmetic): shifts right and fills

g emptied bits by sign extending

CSB1C L12 Introduction to MIPS: Procedures Il logical & shift ops (21) Garcla ©UCB

Shift Instructions (4/4)

+Since shifting may be faster than
multiplication, a good compiler
usually notices when C code
multiplies by a power of 2 and
compiles it to a shift instruction:

a *= 8; (inC)
would compile to:
sll $s0,$s0,3 (in MIPS)
¢ Likewise, shift right to divide by
powers of 2
* remember to use sra

g CS6IC L12 Introduction to MIPS: Procedures Il ogical & shift ops (23) Garcla ©UCB

“And in Conclusion...”

* Register Conventions; Each register has a
Pu ose and limits to its usage. Learn
hese and follow them, even it you’re
writing all the code yourself.

« Logical and Shift Instructions

. Oﬁerate on bits individually, unlike arithmetic,
which operate on entire word.

+ Use to isolate fields, either by masking or by
shifting back and forth.

+ Use shift left logical, s11, for multiplication by
powers of 2

+ Use shift right arithmetic, sra, for division by
powers of _25

¢ New Instructions:
gand,andl , or,ori, sll,srl,sra

CSB1C L12 Introduction to MIPS: Procedures Il logical & shift ops (26) Garcla ©UCB

Example: Fibonacci Numbers 1/8

*The Fibonacci numbers are defined
as follows: F(n) = F(n — 1) + F(n - 2),
F(0) and F(1) are defined to be 1

¢In scheme, this could be written:

(define (Fib n)
(cond ((=no0) 1)
((=n 1) 1)
(else (+ (Fib (- n 1))
(Fib (- n 2)))))

g CSB1C L12 Introdustion to MIPS: Procedures I, logical & shift ops (21)

Garcia ©UCB

Example: Fibonacci Numbers 3/8

° Now, let’s translate this to MIPS!

°You will need space for three words on the
stack

° The function will use one $s register, $s0
° Write the Prologue:

fib:

addi sp, Ssp. -12 # Space for three words

sw Sra, 8($sp) # Save the return address
sw $s0, 4($sp) # Save $s0 _

g CSB1C L12 Introduction to MIPS: Procedures I, logical & shift ops (29)

Garcia ©UCB

Example: Fibonacci Numbers 5/8

° Finally, write the body. The C code is below. Start
by translating the lines indicated in the comments
int fib(int n) {
if(n == 0) { return 1; } /*Translate
Me!*/ if(n == 1) { return 1; }
/*Translate Me!*/ return (fib(n - 1) +
fib(n - 2));

haddi $v0, $zero, 1 #$v0=1

be a0 zero, fin #if (n == 0).

addi $t0, Szero, 1 #$t0=1 __
beg $a0, S$t0 , fin #if (n == 1).

Continued on next slide.

g CSB1C L12 Introdustion to MIPS: Procedures I, logical & shift ops (31)

Garcia ©UCB

Example: Fibonacci Numbers 2/8

*Rewriting this in C we have:

int fib(int n) {
if(n == 0) { return 1; }
if(n == 1) { return 1;
return (fib(n - 1) + fib(n - 2));

g CSB1C L12 Introdustion to MIPS: Procedures I, logical & shift ops (28)

Garcia ©UCB

Example: Fibonacci Numbers 4/8

°Now write the Epilogue:

fin:
1w $s0, 4($sp)
#Restore$s0
1w Sra, 8(Ssp) s
Restore return addres:
addi SSsp, Ssp, 12
#Pop the stack frame
jr Sra # Return to caller

g CSB1C L12 Introdustion to MIPS: Procedures I, logical & shift ops (30

Example: Fibonacci Numbers 6/8

° Almost there, but be careful, this part is tricky!
int fib(int n) {

return (fib(n - 1) + fib(n - 2));
}

addi $a0, $a0, -1__ =n-

Need $a0 after jal
fib(n - 1)

Restore $a0
#%a0=n-2

Continued on next slide.

g CSB1C L12 Introdustion to MIPS: Procedures I, logical & shift ops (32

sw_$a0, 0($sp)
jal fib

lw_$a0, 0($sp)
addi $a0, $a0, -1

Garcia ©UCB

Garcia ©UCB

Example: Fibonacci Numbers 7/8
° Remember that $v0 is caller saved!
int fib(int n) {

return (fib(n - 1) + fib(n - 2));
}

add $s0, $v0, Szero _# Place fib(n—1)
somewhere it won’t get
clobbered

jal fib # fib(n — 2)

add $v0, $v0, $s0__ _# $v0 = fib(n-1) + fib(n-2)

To the epilogue and beyond. . .

g CS6IC L12 Introduction to MIPS: Procedures Il logical & shift ops (33) Garcla © UCB

BONUS: Uses for Shift Instructions (1/4)

*Suppose we want to isolate byte 0
gightmost 8 bits) of a word in $t0.
imply use:

andi $t0,$t0, 0xFF
. Sup?ose we want to isolate byte 1
(bit 15 to bit 8) of a word in $t0. We
can use:
andi $t0,$t0,0xFFO00

but then we still need to shift to the
right by 8 bits...

g CS6IC L12 Introduction to MIPS: Procedures Il logical & shift ops (35) Garcla ©UCB

BONUS: Uses for Shift Instructions (3/4)

¢In decimal:
» Multiplying by 10 is same as shifting left
by 1:
- 7144 x 10, = 7140,
- 56,9 X 10, = 560,

» Multiplying by 100 is same as shifting
left by 2:

- 714, x 100, = 71400,
- 56,5 X 100, = 5600,,

» Multiplying by 10" is same as shifting
left by n

g CS61C L12 Introduction to MIPS: Procedures Il logical & shift ops (37) Garcla ©UCB

Example: Fibonacci Numbers 8/8

° Here’s the complete code for reference:

fib: 1w $a0, 0($sp)
addi $sp, $sp, -12 addi $a0, $a0, -1

sw $ra, 8($sp) add $s0, $v0, $zero
sw $s0, 4($sp)

jal f£ib
ddi 0 1
addi $v0, $zero, add $v0, $v0, $s0
beq $a0, $zero, fin
fin:

addi $t0, $zero, 1
beq $a0, $t0, fin

addi $a0, $a0, -1

sw $a0, 0(S$sp)

jal fib jr $ra

g GSB1C L12 Introduction to MIPS: Procedures I, logical & shift ops (38 Garcia @ UCB

1w $s0, 4($sp)
lw $ra, 8($sp)
addi $sp, $sp, 12

BONUS: Uses for Shift Instructions (2/4)

*Could use instead:

sll $t0,$t0,16
srl $t0,$t0,24

0001 0010 0011 0100 0101 0110 0111 1000
0101 0110 0111 1000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0101 0110

g CS6IC L12 Introduction to MIPS: Procedures Il logical & shift ops (36) Garcla ©UCB

BONUS: Uses for Shift Instructions (4/4)
¢In binary:
» Multiplying by 2 is same as shifting left
by 1:
- 11,x10,=110,
- 1010, x 10, = 10100,
» Multiplying by 4 is same as shifting left
by 2:
- 11,x 100, = 1100,
- 1010, x 100, = 101000,

* Multiplying by 2" is same as shifting left
by n

g CSB1C L12 Introduction to MIPS: Procedures I, logical & shift ops (38 Garcia @ UCB

