
CS61C L14 Introduction to MIPS: Instruction Representation II (1) Garcia © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 14 – Introduction to MIPS
 Instruction Representation II

Are you P2P sharing fans? ⇒
 Two news items: (1) The US

Supreme court has decided to hear the
landmark P2P case MGM vs Grokster, &

(2) Napster was cracked, days after release!
www.cnn.com/2005/LAW/02/16/hilden.fileswap/

www.stuff.co.nz/stuff/0,2106,3189925a28,00.html

CS61C L14 Introduction to MIPS: Instruction Representation II (2) Garcia © UCB

I-Format Problems (0/3)

•Problem 0: Unsigned # sign-extended?
•addiu, sltiu, sign-extends immediates to
32 bits. Thus, # is a “signed” integer.

•Rationale
•addiu so that can add w/out overflow
- See K&R pp. 230, 305

•sltiu suffers so that we can have ez HW
- Does this mean we’ll get wrong answers?
- Nope, it means assembler has to handle any

unsigned immediate 215 ≤ n < 216 (I.e., with a 1
in the 15th bit and 0s in the upper 2 bytes) as
it does for numbers that are too large. ⇒

CS61C L14 Introduction to MIPS: Instruction Representation II (3) Garcia © UCB

I-Format Problems (1/3)

•Problem 1:
•Chances are that addi, lw, sw and slti
will use immediates small enough to fit
in the immediate field.
•…but what if it’s too big?
•We need a way to deal with a 32-bit
immediate in any I-format instruction.

CS61C L14 Introduction to MIPS: Instruction Representation II (4) Garcia © UCB

I-Format Problems (2/3)
•Solution to Problem 1:
•Handle it in software + new instruction
•Don’t change the current instructions:
instead, add a new instruction to help out

•New instruction:
lui register, immediate

• stands for Load Upper Immediate
• takes 16-bit immediate and puts these bits
in the upper half (high order half) of the
specified register
• sets lower half to 0s

CS61C L14 Introduction to MIPS: Instruction Representation II (5) Garcia © UCB

I-Format Problems (3/3)
•Solution to Problem 1 (continued):
•So how does lui help us?
•Example:

addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add $t0,$t0,$at

•Now each I-format instruction has only a 16-
bit immediate.
•Wouldn’t it be nice if the assembler would
this for us automatically? (later)

CS61C L14 Introduction to MIPS: Instruction Representation II (6) Garcia © UCB

Branches: PC-Relative Addressing (1/5)
•Use I-Format
opcode rs rt immediate

•opcode specifies beq v. bne
•rs and rt specify registers to compare
•What can immediate specify?

•Immediate is only 16 bits
•PC (Program Counter) has byte address
of current instruction being executed;
32-bit pointer to memory
•So immediate cannot specify entire
address to branch to.

CS61C L14 Introduction to MIPS: Instruction Representation II (7) Garcia © UCB

Branches: PC-Relative Addressing (2/5)
•How do we usually use branches?
•Answer: if-else, while, for
• Loops are generally small: typically up to
50 instructions
• Function calls and unconditional jumps
are done using jump instructions (j and
jal), not the branches.

•Conclusion: may want to branch to
anywhere in memory, but a branch
often changes PC by a small amount

CS61C L14 Introduction to MIPS: Instruction Representation II (8) Garcia © UCB

Branches: PC-Relative Addressing (3/5)

•Solution to branches in a 32-bit
instruction: PC-Relative Addressing
•Let the 16-bit immediate field be a
signed two’s complement integer to
be added to the PC if we take the
branch.
•Now we can branch ± 215 bytes from
the PC, which should be enough to
cover almost any loop.
•Any ideas to further optimize this?

CS61C L14 Introduction to MIPS: Instruction Representation II (9) Garcia © UCB

Branches: PC-Relative Addressing (4/5)

•Note: Instructions are words, so
they’re word aligned (byte address is
always a multiple of 4, which means it
ends with 00 in binary).
•So the number of bytes to add to the PC
will always be a multiple of 4.
•So specify the immediate in words.

•Now, we can branch ± 215 words from
the PC (or ± 217 bytes), so we can
handle loops 4 times as large.

CS61C L14 Introduction to MIPS: Instruction Representation II (10) Garcia © UCB

Branches: PC-Relative Addressing (5/5)
•Branch Calculation:
• If we don’t take the branch:

PC = PC + 4
PC+4 = byte address of next instruction

• If we do take the branch:
PC = (PC + 4) + (immediate * 4)

•Observations
- Immediate field specifies the number of

words to jump, which is simply the number of
instructions to jump.

- Immediate field can be positive or negative.
- Due to hardware, add immediate to (PC+4),

not to PC; will be clearer why later in course

CS61C L14 Introduction to MIPS: Instruction Representation II (11) Garcia © UCB

Branch Example (1/3)
•MIPS Code:

Loop: beq $9,$0,End
add $8,$8,$10
addi $9,$9,-1
j Loop

End:

•beq branch is I-Format:
opcode = 4 (look up in table)
rs = 9 (first operand)
rt = 0 (second operand)
immediate = ???

CS61C L14 Introduction to MIPS: Instruction Representation II (12) Garcia © UCB

Branch Example (2/3)
•MIPS Code:

Loop: beq $9,$0,End
addi $8,$8,$10
addi $9,$9,-1
j Loop

End:

•Immediate Field:
•Number of instructions to add to (or
subtract from) the PC, starting at the
instruction following the branch.
• In beq case, immediate = 3

CS61C L14 Introduction to MIPS: Instruction Representation II (13) Garcia © UCB

Branch Example (3/3)
•MIPS Code:

Loop: beq $9,$0,End
addi $8,$8,$10
addi $9,$9,-1
j Loop

End:

4 9 0 3

decimal representation:

binary representation:
000100 01001 00000 0000000000000011

CS61C L14 Introduction to MIPS: Instruction Representation II (14) Garcia © UCB

Questions on PC-addressing

•Does the value in branch field change
if we move the code?
•What do we do if destination is > 215
instructions away from branch?
•Since it’s limited to ± 215 instructions,
doesn’t this generate lots of extra
MIPS instructions?
•Why do we need all these addressing
modes? Why not just one?

CS61C L14 Introduction to MIPS: Instruction Representation II (15) Garcia © UCB

Administrivia

•Dan’s OH cancelled this next week
•He’ll be out of town

•Homework 2 graded
• They’ll be frozen next week

CS61C L14 Introduction to MIPS: Instruction Representation II (16) Garcia © UCB

Upcoming Calendar

SDS II

Running
Program

I

TA
Floating

Pt I
(No Dan OH)

Wed

SDS IIISDSSDS I
Midterm

7pm-
10pm 1

Le Conte

#8
Midterm

week
Sun 2pm

Review
10 Evans

Running
Program

II
Running
Program

MIPS Inst
Format III

#7
Following

week

TA
Floating

Pt II
Floating

Pt
(No Dan OH)

President’s
Day

Holiday

#6
Next

week

FriThu LabMonWeek #

CS61C L14 Introduction to MIPS: Instruction Representation II (17) Garcia © UCB

J-Format Instructions (1/5)

•For branches, we assumed that we
won’t want to branch too far, so we
can specify change in PC.
•For general jumps (j and jal), we
may jump to anywhere in memory.
• Ideally, we could specify a 32-bit
memory address to jump to.
•Unfortunately, we can’t fit both a 6-bit
opcode and a 32-bit address into a
single 32-bit word, so we compromise.

CS61C L14 Introduction to MIPS: Instruction Representation II (18) Garcia © UCB

J-Format Instructions (2/5)
•Define “fields” of the following
number of bits each:

6 bits 26 bits

opcode target address

•As usual, each field has a name:

•Key Concepts
•Keep opcode field identical to R-format
and I-format for consistency.
•Combine all other fields to make room
for large target address.

CS61C L14 Introduction to MIPS: Instruction Representation II (19) Garcia © UCB

J-Format Instructions (3/5)

•For now, we can specify 26 bits of the
32-bit bit address.
•Optimization:
•Note that, just like with branches, jumps
will only jump to word aligned addresses,
so last two bits are always 00 (in binary).
•So let’s just take this for granted and not
even specify them.

CS61C L14 Introduction to MIPS: Instruction Representation II (20) Garcia © UCB

J-Format Instructions (4/5)
•Now specify 28 bits of a 32-bit address
•Where do we get the other 4 bits?
•By definition, take the 4 highest order bits
from the PC.
• Technically, this means that we cannot
jump to anywhere in memory, but it’s
adequate 99.9999…% of the time, since
programs aren’t that long
- only if straddle a 256 MB boundary

• If we absolutely need to specify a 32-bit
address, we can always put it in a register
and use the jr instruction.

CS61C L14 Introduction to MIPS: Instruction Representation II (21) Garcia © UCB

J-Format Instructions (5/5)

•Summary:
•New PC = { PC[31..28], target address, 00 }

•Understand where each part came from!
•Note: { , , } means concatenation
{ 4 bits , 26 bits , 2 bits } = 32 bit
address
• { 1010, 11111111111111111111111111, 00 }
= 10101111111111111111111111111100
•Note: Book uses ||, Verilog uses { , , }
•We will learn Verilog later in this class

CS61C L14 Introduction to MIPS: Instruction Representation II (22) Garcia © UCB

Peer Instruction Question

(for A,B) When combining two C files into
one executable, recall we can compile
them independently & then merge them
together.

A. Jump insts don’t require any changes.
B. Branch insts don’t require any changes.
C. You now have all the tools to be able to

“decompile” a stream of 1s and 0s into C!

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L14 Introduction to MIPS: Instruction Representation II (23) Garcia © UCB

In conclusion…

•MIPS Machine Language Instruction:
32 bits representing a single instruction

•Branches use PC-relative addressing,
Jumps use absolute addressing.
•Disassembly is simple and starts by
decoding opcode field. (more in a week)

opcode rs rt immediate
opcode rs rt rd functshamtR

I
J target addressopcode

