
CS 61C L15 Floating Point I (1) Krause, Spring 2005 © UCB

This day in history…

TA Danny Krause

inst.eecs.berkeley.edu/~cs61c-td

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 15 – Floating Point I
 2004-02-23

1455 - Publication of the Gutenberg Bible
1998 - Netscape founds Mozilla.org

CS 61C L15 Floating Point I (2) Krause, Spring 2005 © UCB

Quote of the day

“95% of the
folks out there are

completely clueless
about floating-point.”
James Gosling
Sun Fellow
Java Inventor
1998-02-28

CS 61C L15 Floating Point I (3) Krause, Spring 2005 © UCB

Review of Numbers

•Computers are made to deal with
numbers
•What can we represent in N bits?
•Unsigned integers:

0 to 2N - 1
•Signed Integers (Two’s Complement)

-2(N-1) to 2(N-1) - 1

CS 61C L15 Floating Point I (4) Krause, Spring 2005 © UCB

Other Numbers
•What about other numbers?
•Very large numbers? (seconds/century)

3,155,760,00010 (3.1557610 x 109)
•Very small numbers? (atomic diameter)

0.0000000110 (1.010 x 10-8)
•Rationals (repeating pattern)

2/3 (0.666666666. . .)
• Irrationals

21/2 (1.414213562373. . .)
• Transcendentals

e (2.718...), π (3.141...)

•All represented in scientific notation

CS 61C L15 Floating Point I (5) Krause, Spring 2005 © UCB

Scientific Notation (in Decimal)

6.0210 x 1023

radix (base)decimal point

mantissa exponent

• Normalized form: no leadings 0s
(exactly one digit to left of decimal point)
• Alternatives to representing 1/1,000,000,000

• Normalized: 1.0 x 10-9

• Not normalized: 0.1 x 10-8,10.0 x 10-10

CS 61C L15 Floating Point I (6) Krause, Spring 2005 © UCB

Scientific Notation (in Binary)

1.0two x 2-1

radix (base)“binary point”

exponent

•Computer arithmetic that supports it
called floating point, because it
represents numbers where the binary
point is not fixed, as it is for integers
•Declare such variable in C as float

mantissa

CS 61C L15 Floating Point I (7) Krause, Spring 2005 © UCB

Floating Point Representation (1/2)
•Normal format: +1.xxxxxxxxxxtwo*2yyyytwo

•Multiple of Word Size (32 bits)

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
•S represents Sign
Exponent represents y’s
Significand represents x’s
•Represent numbers as small as
2.0 x 10-38 to as large as 2.0 x 1038

CS 61C L15 Floating Point I (8) Krause, Spring 2005 © UCB

Floating Point Representation (2/2)

•What if result too large? (> 2.0x1038)
•Overflow!
•Overflow ⇒ Exponent larger than
represented in 8-bit Exponent field

•What if result too small? (>0, < 2.0x10-38)
•Underflow!
•Underflow ⇒ Negative exponent larger than
represented in 8-bit Exponent field

•How to reduce chances of overflow or
underflow?

CS 61C L15 Floating Point I (9) Krause, Spring 2005 © UCB

Double Precision Fl. Pt. Representation
•Next Multiple of Word Size (64 bits)

•Double Precision (vs. Single Precision)
•C variable declared as double
•Represent numbers almost as small as
2.0 x 10-308 to almost as large as 2.0 x 10308

•But primary advantage is greater accuracy
due to larger significand

031
S Exponent

30 20 19
Significand

1 bit 11 bits 20 bits
Significand (cont’d)

32 bits

CS 61C L15 Floating Point I (10) Krause, Spring 2005 © UCB

QUAD Precision Fl. Pt. Representation
•Next Multiple of Word Size (128 bits)
•Unbelievable range of numbers
•Unbelievable precision (accuracy)
•This is currently being worked on
•The current version has 15 bits for the
exponent and 112 bits for the
significand
•Oct-Precision? That’s just silly! It’s
been implemented before…

CS 61C L15 Floating Point I (11) Krause, Spring 2005 © UCB

IEEE 754 Floating Point Standard (1/4)
•Single Precision, DP similar
•Sign bit: 1 means negative

0 means positive
•Significand:
• To pack more bits, leading 1 implicit for
normalized numbers
• 1 + 23 bits single, 1 + 52 bits double
• always true: Significand < 1

(for normalized numbers)

•Note: 0 has no leading 1, so reserve
exponent value 0 just for number 0

CS 61C L15 Floating Point I (12) Krause, Spring 2005 © UCB

IEEE 754 Floating Point Standard (2/4)
•Kahan wanted FP numbers to be used
even if no FP hardware; e.g., sort records
with FP numbers using integer compares
•Could break FP number into 3 parts:
compare signs, then compare exponents,
then compare significands
•Wanted it to be faster, single compare if
possible, especially if positive numbers
•Then want order:
•Highest order bit is sign (negative < positive)
•Exponent next, so big exponent => bigger #
•Significand last: exponents same => bigger #

CS 61C L15 Floating Point I (13) Krause, Spring 2005 © UCB

IEEE 754 Floating Point Standard (3/4)
•Negative Exponent?
• 2’s comp? 1.0 x 2-1 v. 1.0 x2+1 (1/2 v. 2)

0 1111 1111 000 0000 0000 0000 0000 00001/2
0 0000 0001 000 0000 0000 0000 0000 00002
• This notation using integer compare of
1/2 v. 2 makes 1/2 > 2!

• Instead, pick notation 0000 0001 is most
negative, and 1111 1111 is most positive
• 1.0 x 2-1 v. 1.0 x2+1 (1/2 v. 2)

1/2 0 0111 1110 000 0000 0000 0000 0000 0000
0 1000 0000 000 0000 0000 0000 0000 00002

CS 61C L15 Floating Point I (14) Krause, Spring 2005 © UCB

IEEE 754 Floating Point Standard (4/4)
•Called Biased Notation, where bias is
number subtract to get real number
• IEEE 754 uses bias of 127 for single prec.
•Subtract 127 from Exponent field to get
actual value for exponent
• 1023 is bias for double precision

•Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

•Double precision identical, except with
exponent bias of 1023

CS 61C L15 Floating Point I (15) Krause, Spring 2005 © UCB

“Father” of the Floating point standard

IEEE Standard
754 for Binary
Floating-Point

Arithmetic.

www.cs.berkeley.edu/~wkahan/
…/ieee754status/754story.html

Prof. Kahan
1989

ACM Turing
Award Winner!

CS 61C L15 Floating Point I (16) Krause, Spring 2005 © UCB

Administrivia…Midterm in 2 weeks!
•Midterm 1 LeConte Mon 2004-03-07 @ 7-10pm

• Conflicts/DSP? Email Head TA Andy, cc Dan

• How should we study for the midterm?
• Form study groups -- don’t prepare in isolation!
• Attend the review session

(2004-03-06 @ 2pm in 10 Evans)
• Look over HW, Labs, Projects
• Write up your 1-page study sheet--handwritten
• Go over old exams – HKN office has put them

online (link from 61C home page)

CS 61C L15 Floating Point I (17) Krause, Spring 2005 © UCB

Upcoming Calendar

State
Elements

Running
Program

Floating
Pt I

Wed

Comb.
Logic

Midterm
grades

out

Finite
State

Machines

Digital
Systems
Midterm
@ 7pm

#8
Midterm

week

Running
Program

Running
Program

MIPS
inst.

Format III
#7

Next week

Floating
Pt II

Floating
PtHoliday

#6
This week

FriThurs LabMonWeek #

CS 61C L15 Floating Point I (18) Krause, Spring 2005 © UCB

Understanding the Significand (1/2)

•Method 1 (Fractions):
• In decimal: 0.34010 => 34010/100010

 => 3410/10010

• In binary: 0.1102 => 1102/10002 = 610/810
 => 112/1002 = 310/410

•Advantage: less purely numerical, more
thought oriented; this method usually
helps people understand the meaning of
the significand better

CS 61C L15 Floating Point I (19) Krause, Spring 2005 © UCB

Understanding the Significand (2/2)

•Method 2 (Place Values):
•Convert from scientific notation
• In decimal: 1.6732 = (1x100) + (6x10-1) +
(7x10-2) + (3x10-3) + (2x10-4)
• In binary: 1.1001 = (1x20) + (1x2-1) +
(0x2-2) + (0x2-3) + (1x2-4)
• Interpretation of value in each position
extends beyond the decimal/binary point
•Advantage: good for quickly calculating
significand value; use this method for
translating FP numbers

CS 61C L15 Floating Point I (20) Krause, Spring 2005 © UCB

Example: Converting Binary FP to Decimal

•Sign: 0 => positive
•Exponent:
• 0110 1000two = 104ten

•Bias adjustment: 104 - 127 = -23

•Significand:
• 1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +...
=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22

= 1.0ten + 0.666115ten

0 0110 1000 101 0101 0100 0011 0100 0010

•Represents: 1.666115ten*2-23 ~ 1.986*10-7

 (about 2/10,000,000)

CS 61C L15 Floating Point I (21) Krause, Spring 2005 © UCB

Converting Decimal to FP (1/3)
•Simple Case: If denominator is an
exponent of 2 (2, 4, 8, 16, etc.), then
it’s easy.
•Show MIPS representation of -0.75
• -0.75 = -3/4
• -11two/100two = -0.11two
•Normalized to -1.1two x 2-1

• (-1)S x (1 + Significand) x 2(Exponent-127)

• (-1)1 x (1 + .100 0000 ... 0000) x 2(126-127)

1 0111 1110 100 0000 0000 0000 0000 0000

CS 61C L15 Floating Point I (22) Krause, Spring 2005 © UCB

Converting Decimal to FP (2/3)

•Not So Simple Case: If denominator is
not an exponent of 2.
• Then we can’t represent number precisely,
but that’s why we have so many bits in
significand: for precision
•Once we have significand, normalizing a
number to get the exponent is easy.
•So how do we get the significand of a
neverending number?

CS 61C L15 Floating Point I (23) Krause, Spring 2005 © UCB

Converting Decimal to FP (3/3)

•Fact: All rational numbers have a
repeating pattern when written out in
decimal.
•Fact: This still applies in binary.
•To finish conversion:
•Write out binary number with repeating
pattern.
•Cut it off after correct number of bits
(different for single v. double precision).
•Derive Sign, Exponent and Significand
fields.

CS 61C L15 Floating Point I (24) Krause, Spring 2005 © UCB

1: -1.75
2: -3.5
3: -3.75
4: -7
5: -7.5
6: -15
7: -7 * 2^129
8: -129 * 2^7

Peer Instruction

What is the decimal equivalent
of the floating pt # above?

1 1000 0001 111 0000 0000 0000 0000 0000

CS 61C L15 Floating Point I (26) Krause, Spring 2005 © UCB

“And in conclusion…”
•Floating Point numbers approximate
values that we want to use.
• IEEE 754 Floating Point Standard is most
widely accepted attempt to standardize
interpretation of such numbers
•Every desktop or server computer sold since
~1997 follows these conventions

•Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

•Double precision identical, bias of 1023

