

CS 61C L15 Floating Point I (1)

Krause, Spring 2005 © UCB

"95% of the folks out there are **completely clueless** about floating-point."

James Gosling **Sun Fellow Java Inventor** 1998-02-28

CS 61C L15 Floating Point I (2)

Krause, Spring 2005 © UCB

Review of Numbers

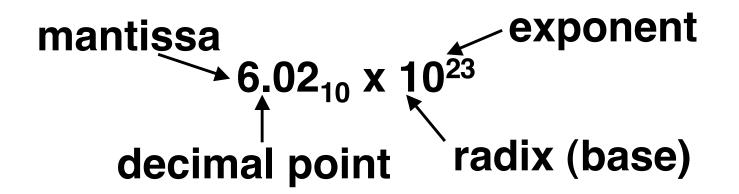
- Computers are made to deal with numbers
- What can we represent in N bits?
 - Unsigned integers:
 - 0to $2^N 1$ Signed Integers (Two's Complement) $-2^{(N-1)}$ to $2^{(N-1)} 1$

Other Numbers

- What about other numbers?
 - Very large numbers? (seconds/century) 3,155,760,000₁₀ (3.15576₁₀ x 10⁹)
 - Very small numbers? (atomic diameter) $0.0000001_{10} (1.0_{10} \times 10^{-8})$
 - Rationals (repeating pattern) 2/3 (0.66666666666...)
 - Irrationals
 2^{1/2}
- (1.414213562373...)
- Transcendentals
 e (2.718...), π (3.141...)

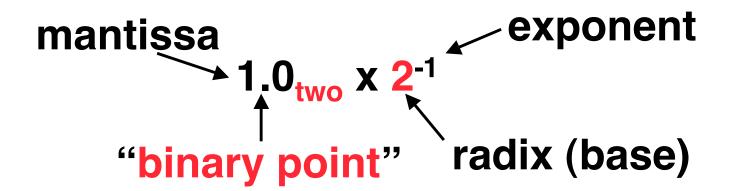
CS 61C L15 Floating Point I (4)

Scientific Notation (in Decimal)



- Normalized form: no leadings 0s (exactly one digit to left of decimal point)
- Alternatives to representing 1/1,000,000,000
 - Normalized: 1.0 x 10⁻⁹
 - Not normalized: 0.1 x 10⁻⁸,10.0 x 10⁻¹⁰

Scientific Notation (in Binary)



- Computer arithmetic that supports it called <u>floating point</u>, because it represents numbers where the binary point is not fixed, as it is for integers
 - Declare such variable in C as float

Floating Point Representation (1/2)

- Multiple of Word Size (32 bits)

- S represents Sign Exponent represents y's Significand represents x's
- Represent numbers as small as 2.0 x 10⁻³⁸ to as large as 2.0 x 10³⁸

Floating Point Representation (2/2)

- What if result too large? (> 2.0x10³⁸)
 - <u>Overflow</u>!
 - Overflow ⇒ Exponent larger than represented in 8-bit Exponent field
- What if result too small? (>0, < 2.0x10⁻³⁸)
 - <u>Underflow!</u>
 - Underflow

 Negative exponent larger than represented in 8-bit Exponent field
- How to reduce chances of overflow or underflow?

Double Precision FI. Pt. Representation

Next Multiple of Word Size (64 bits)

31 30	20 19		0
S	Exponent	Significand	
1 bit	11 bits	20 bits	
	Significand (cont'd)		

32 bits

- Double Precision (vs. Single Precision)
 - C variable declared as double
 - Represent numbers almost as small as 2.0 x 10⁻³⁰⁸ to almost as large as 2.0 x 10³⁰⁸
 - But primary advantage is greater accuracy due to larger significand

QUAD Precision FI. Pt. Representation

- Next Multiple of Word Size (128 bits)
- Unbelievable range of numbers
- Unbelievable precision (accuracy)
- This is currently being worked on
- The current version has 15 bits for the exponent and 112 bits for the significand
- Oct-Precision? That's just silly! It's been implemented before...

IEEE 754 Floating Point Standard (1/4)

- Single Precision, DP similar
- Sign bit: 1 means negative 0 means positive
- Significand:
 - To pack more bits, leading 1 implicit for normalized numbers
 - \cdot 1 + 23 bits single, 1 + 52 bits double
 - always true: Significand < 1 (for normalized numbers)
- Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

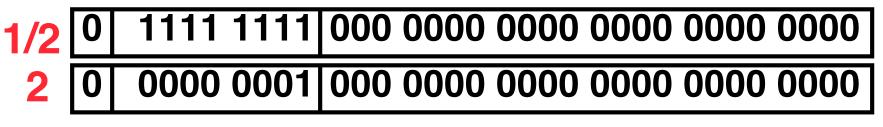
IEEE 754 Floating Point Standard (2/4)

- Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares
- Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands
- Wanted it to be faster, single compare if possible, especially if positive numbers
- Then want order:
 - Highest order bit is sign (negative < positive)
 - Exponent next, so big exponent => bigger #

Significand last: exponents same => bigger #

IEEE 754 Floating Point Standard (3/4)

- Negative Exponent?
 - 2's comp? 1.0 x 2⁻¹ v. 1.0 x2⁺¹ (1/2 v. 2)



- This notation using integer compare of 1/2 v. 2 makes 1/2 > 2!
- Instead, pick notation 0000 0001 is most negative, and 1111 1111 is most positive

0111 1110 000 0000 0000 0000 0000 0000

1000 0000 000 0000 0000 0000 0000 0000

0

IEEE 754 Floating Point Standard (4/4)

- Called <u>Biased Notation</u>, where bias is number subtract to get real number
 - IEEE 754 uses bias of 127 for single prec.
 - Subtract 127 from Exponent field to get actual value for exponent
 - 1023 is bias for double precision
- Summary (single precision):

31 30	23 22	
S Ex	kponent	Significand

- 1 bit 8 bits 23 bits
- •(-1)^S x (1 + Significand) x 2^(Exponent-127)

Double precision identical, except with exponent bias of 1023

CS 61C L15 Floating Point I (14)

"Father" of the Floating point standard

www.cs.berkeley.edu/~wkahan/ .../ieee754status/754story.html

Administrivia...Midterm in 2 weeks!

- Midterm 1 LeConte Mon 2004-03-07 @ 7-10pm
 - Conflicts/DSP? Email Head TA Andy, cc Dan
- How should we study for the midterm?
 - Form study groups -- don't prepare in isolation!
 - Attend the review session (2004-03-06 @ 2pm in 10 Evans)
 - Look over HW, Labs, Projects
 - Write up your 1-page study sheet--handwritten
 - Go over old exams HKN office has put them online (link from 61C home page)

Upcoming Calendar

Week #	Mon	Wed	Thurs Lab	Fri
#6 This week	Holiday	Floating Pt I	Floating Pt	Floating Pt II
#7 Next week	MIPS inst. Format III	Running Program	Running Program	Running Program
#8 Midterm week	Digital Systems Midterm @ 7pm	State Elements	Finite State Machines	Comb. Logic Midterm grades out

Understanding the Significand (1/2)

- Method 1 (Fractions):
 - In decimal: $0.340_{10} \Rightarrow 340_{10}/1000_{10} \Rightarrow 34_{10}/100_{10}$
 - In binary: $0.110_2 \Rightarrow 110_2/1000_2 = 6_{10}/8_{10}$ => $11_2/100_2 = 3_{10}/4_{10}$
 - Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

Understanding the Significand (2/2)

- Method 2 (Place Values):
 - Convert from scientific notation
 - In decimal: $1.6732 = (1x10^{\circ}) + (6x10^{-1}) + (7x10^{-2}) + (3x10^{-3}) + (2x10^{-4})$
 - In binary: $1.1001 = (1x2^{0}) + (1x2^{-1}) + (0x2^{-2}) + (0x2^{-3}) + (1x2^{-4})$
 - Interpretation of value in each position extends beyond the decimal/binary point
 - Advantage: good for quickly calculating significand value; use this method for translating FP numbers

Example: Converting Binary FP to Decimal

- 0 0110 1000 101 0101 0100 0011 0100 0010
- Sign: 0 => positive
- Exponent:
 - 0110 1000 $_{two} = 104_{ten}$
 - Bias adjustment: 104 127 = -23
- Significand:
 - 1 + 1x2⁻¹+ 0x2⁻² + 1x2⁻³ + 0x2⁻⁴ + 1x2⁻⁵ +... =1+2⁻¹+2⁻³ +2⁻⁵ +2⁻⁷ +2⁻⁹ +2⁻¹⁴ +2⁻¹⁵ +2⁻¹⁷ +2⁻²² = 1.0_{ten} + 0.666115_{ten}

• Represents: 1.666115_{ten}*2⁻²³ ~ 1.986*10⁻⁷ (about 2/10,000,000) Krause, Spring 2005 © UCB **Converting Decimal to FP (1/3)**

- Simple Case: If denominator is an exponent of 2 (2, 4, 8, 16, etc.), then it's easy.
- Show MIPS representation of -0.75
 - -0.75 = -3/4
 - $\cdot -11_{two} / 100_{two} = -0.11_{two}$
 - Normalized to -1.1_{two} x 2⁻¹
 - (-1)^S x (1 + Significand) x 2^(Exponent-127)
 - (-1)¹ x (1 + .100 0000 ... 0000) x $2^{(126-127)}$

1 0111 1110 100 0000 0000 0000 0000 0000

Converting Decimal to FP (2/3)

- Not So Simple Case: If denominator is not an exponent of 2.
 - Then we can't represent number precisely, but that's why we have so many bits in significand: for precision
 - Once we have significand, normalizing a number to get the exponent is easy.
 - So how do we get the significand of a neverending number?

Converting Decimal to FP (3/3)

- Fact: All rational numbers have a repeating pattern when written out in decimal.
- Fact: This still applies in binary.
- To finish conversion:
 - Write out binary number with repeating pattern.
 - Cut it off after correct number of bits (different for single v. double precision).
 - Derive Sign, Exponent and Significand fields.

1 1000 0001 111 0000 0000 0000 0000 0000

What is the decimal equivalent of the floating pt # above?

1: -1.75 2: -3.5 3: -3.75 4: -7 5: -7.5 6: -15 $7: -7 * 2^{129}$ $8: -129 * 2^{7}$

Krause, Spring 2005 © UCB

"And in conclusion..."

- Floating Point numbers <u>approximate</u> values that we want to use.
- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers
 - Every desktop or server computer sold since ~1997 follows these conventions
- Summary (single precision):

31 30	23	22 0
S E	xponent	Significand
1 bit	8 bits	23 bits

- •(-1)^S x (1 + Significand) x 2^(Exponent-127)
 - 🖉 Double precision identical, bias of 1023