
1

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Lecturer NSOE Steven Kusalo

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture 16 – Floating Point II

2004-10-06

20 years from now...
1) We'll all have robot servants

or...
2) The world will be a

smoking ruin
CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Example: Representing 1/3 in MIPS
• 1/3

= 0.33333…10

= 0.25 + 0.0625 + 0.015625 + 0.00390625 + …
= 1/4 + 1/16 + 1/64 + 1/256 + …
= 2-2 + 2-4 + 2-6 + 2-8 + …
= 0.0101010101… 2 * 20

= 1.0101010101… 2 * 2-2

• Sign: 0
• Exponent = -2 + 127 = 125 = 01111101
• Significand = 0101010101…
0 0111 1101 0101 0101 0101 0101 0101 010

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Representation for ± ∞
• In FP, divide by 0 should produce ± ∞,
not overflow.

• Why?
• OK to do further computations with ∞
E.g., X/0 > Y may be a valid comparison

• Ask math majors

• IEEE 754 represents ± ∞
• Most positive exponent reserved for ∞
• Significands all zeroes

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Special Numbers• What have we defined so far?
(Single Precision)

Exponent Significand Object
0 0 0
0 nonzero ???
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero ???

• Professor Kahan had clever ideas;
“Waste not, want not”

• Exp=0,255 & Sig!=0 …

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Representation for Not a Number
• What is sqrt(-4.0)or 0/0?

• If ∞ not an error, these shouldn’t be either.
• Called Not a Number (NaN)
• Exponent = 255, Significand nonzero

• Why is this useful?
• Hope NaNs help with debugging?
• They contaminate: op(NaN, X) = NaN

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Representation for Denorms (1/2)
• Problem: There’s a gap among
representable FP numbers around 0

• Smallest representable pos num:
a = 1.0… 2 * 2-126 = 2-126

• Second smallest representable pos num:
b = 1.000……1 2 * 2-126 = 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149

b
a0

+-
Gaps!

Normalization
and implicit 1
is to blame!

2

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Representation for Denorms (2/2)
• Solution:

• We still haven’t used Exponent = 0,
Significand nonzero

• Denormalized number: no leading 1,
implicit exponent = -126.

• Smallest representable pos num:
a = 2-149

• Second smallest representable pos num:
b = 2-148

0
+-

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Overview
• Reserve exponents, significands:

Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Rounding
• Math on real numbers ⇒ we worry
about rounding to fit result in the
significant field.

• FP hardware carries 2 extra bits of
precision, and rounds for proper value

• Rounding occurs when converting…
• double to single precision
• floating point # to an integer

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

IEEE Four Rounding Modes
• Round towards + ∞

• ALWAYS round “up”: 2.1 ⇒ 3, -2.1 ⇒ -2

• Round towards - ∞
• ALWAYS round “down”: 1.9 ⇒ 1, -1.9 ⇒ -2

• Truncate
• Just drop the last bits (round towards 0)

• Round to (nearest) even (default)
• Normal rounding, almost: 2.5 ⇒ 2, 3.5 ⇒ 4
• Like you learned in grade school
• Insures fairness on calculation
• Half the time we round up, other half down

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Integer Multiplication (1/3)
• Paper and pencil example (unsigned):

Multiplicand 1000 8
Multiplier x1001 9

1000
0000
0000

+1000
01001000

• m bits x n bits = m + n bit product

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Integer Multiplication (2/3)
• In MIPS, we multiply registers, so:

• 32-bit value x 32-bit value = 64-bit value

• Syntax of Multiplication (signed):
• mult register1, register2
• Multiplies 32-bit values in those registers &
puts 64-bit product in special result regs:

- puts product upper half in hi, lower half in lo

• hi and lo are 2 registers separate from the
32 general purpose registers

• Use mfhi register & mflo register to
move from hi, lo to another register

3

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Integer Multiplication (3/3)
• Example:

• in C: a = b * c;

• in MIPS:
- let b be $s2; let c be $s3; and let a be $s0

and $s1 (since it may be up to 64 bits)
mult $s2,$s3 # b*c
mfhi $s0 # upper half
of # product
into $s0
mflo $s1 # lower half of

product into $s1

• Note: Often, we only care about the
lower half of the product.

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Integer Division (1/2)
• Paper and pencil example (unsigned):

1001 Quotient
Divisor 1000|1001010 Dividend

-1000
10
101
1010
-1000

10 Remainder
(or Modulo result)

• Dividend = Quotient x Divisor + Remainder

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Integer Division (2/2)
• Syntax of Division (signed):

• div register1, register2
• Divides 32-bit register 1 by 32-bit register 2:
• puts remainder of division in hi, quotient in lo

• Implements C division (/) and modulo (%)
• Example in C: a = c / d;

b = c % d;

• in MIPS: a↔$s0;b↔$s1;c↔$s2;d↔$s3

div $s2,$s3 # lo=c/d, hi=c%d
mflo $s0 # get quotient
mfhi $s1 # get remainder

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Unsigned Instructions & Overflow
• MIPS also has versions of mult, div
for unsigned operands:

multu

divu
• Determines whether or not the product
and quotient are changed if the operands
are signed or unsigned.

• MIPS does not check overflow on ANY
signed/unsigned multiply, divide instr

• Up to the software to check hi

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

FP Addition & Subtraction
• Much more difficult than with integers

(can’t just add significands)
• How do we do it?

• De-normalize to match larger exponent
• Add significands to get resulting one
• Normalize (& check for under/overflow)
• Round if needed (may need to renormalize)

• If signs ≠, do a subtract. (Subtract similar)
• If signs ≠ for add (or = for sub), what’s ans sign?

• Question: How do we integrate this into the
integer arithmetic unit? [Answer: We don’t!]

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

MIPS Floating Point Architecture (
• Separate floating point instructions:

• Single
Precision:
add.s, sub.s, mul.s, div.s

• Double
Precision:
add.d, sub.d, mul.d, div.d

• These are far more complicated than
their integer counterparts

• Can take much longer to execute

4

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

MIPS Floating Point Architecture (2
• Problems:

• Inefficient to have different instructions
take vastly differing amounts of time.

• Generally, a particular piece of data will
not change FP ⇔ int within a program.

- Only 1 type of instruction will be used on it.

• Some programs do no FP calculations
• It takes lots of hardware relative to
integers to do FP fast

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

MIPS Floating Point Architecture (3• 1990 Solution: Make a completely
separate chip that handles only FP.

• Coprocessor 1: FP chip
• contains 32 32-bit registers: $f0, $f1, …
• most of the registers specified in .s and
.d instruction refer to this set

• separate load and store: lwc1 and swc1
(“load word coprocessor 1”, “store …”)

• Double Precision: by convention,
even/odd pair contain one DP FP number:
$f0/$f1, $f2/$f3, … , $f30/$f31

- Even register is the name

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

MIPS Floating Point Architecture (4
• 1990 Computer actually contains
multiple separate chips:

• Processor: handles all the normal stuff
• Coprocessor 1: handles FP and only FP;
• more coprocessors?… Yes, later
• Today, FP coprocessor integrated with
CPU, or cheap chips may leave out FP HW

• Instructions to move data between main
processor and coprocessors:

• mfc0, mtc0, mfc1, mtc1, etc.

• Appendix contains many more FP ops
CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Peer Instruction 1

• Let X = # of floats between 1 and 2
• Let Y = # of floats between 2 and 3

1: X > Y
2: X < Y
3: X = Y

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

Peer Instruction 2

1. Converting float -> int -> float
produces same float number

2. Converting int -> float -> int
produces same int number

3. FP add is associative:
(x+y)+z = x+(y+z)

ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS 61C L16 : Floating Point II (1) Kusalo, Spring 2005 © UCB

“And in conclusion…”
• Reserve exponents, significands:

Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

• Integer mult, div uses hi, lo regs
• mfhi and mflo copies out.

• Four rounding modes (to even default)
• MIPS FL ops complicated, expensive

