

Representation for $\pm \infty$

- In FP, divide by 0 should produce $\pm \infty$, not overflow.
-Why?
- OK to do further computations with ∞ E.g., X/0 > Y may be a valid comparison
- Ask math majors
- IEEE 754 represents $\pm \infty$
- Most positive exponent reserved for ∞
- Significands all zeroes

Cs 61 CL L16: Floating Point | (1)

$$
\begin{aligned}
& \text { Example: Representing } 1 / 3 \text { in MLP } \\
& \text { •1/3 } \\
& =0.33333 \ldots 10 \\
& =0.25+0.0625+0.015625+0.00390625+\ldots \\
& =1 / 4+1 / 16+1 / 64+1 / 256+\ldots \\
& =2^{-2}+2^{-4}+2^{-6}+2^{-8}+\ldots \\
& =0.0101010101 \ldots 2^{*} 2^{0} \\
& =1.0101010101 \ldots{ }_{2}^{*} 2^{-2} \\
& \text { - Sign: } 0 \\
& \text { - Exponent =-2 + } 127 \text { = } 125 \text { = } 01111101 \\
& \text { - } \text { Significand }=0101010101 \ldots
\end{aligned}
$$

Special Numbers
-What have we defined so far?
(Single Precision)
Exponent

| Significand |
| :--- | :--- | :--- |

0

- Professor Kahan had clever ideas;
"Waste not, want not"
- Exp=0,255 \& Sig! $=0$...

Cal
CS 61 C L16: Floating Point 1 (1)

Representation for Not a Number

-What is sqrt(-4.0) or 0/0?

- If ∞ not an error, these shouldn't be either.
- Called Not a Number (NaN)
- Exponent = 255, Significand nonzero
- Why is this useful?
- Hope NaNs help with debugging?
- They contaminate: $\mathrm{op}(\mathrm{NaN}, \mathrm{X})=\mathrm{NaN}$

Representation for Denorms (1/2)

- Problem: There's a gap among representable FP numbers around 0
- Smallest representable pos num:

$$
a=1.0 \ldots{ }^{*} 2^{-126}=2^{-126}
$$

- Second smallest representable pos num:

$$
b=1.000 \ldots \ldots .1_{2} * 2^{-126}=2^{-126}+2^{-149}
$$

a-0 $=2^{-126}$
Normalization and implicit 1 is to blame!

Cal

Representation for Denorms (2/2)

- Solution:
- We still haven't used Exponent = 0 , Significand nonzero
- Denormalized number: no leading 1, implicit exponent =-126.
- Smallest representable pos num: $a=2-149$
- Second smallest representable pos num:
$\mathrm{b}=\mathbf{2}^{-148}$

Rounding

- Math on real numbers \Rightarrow we worry about rounding to fit result in the significant field.
- FP hardware carries 2 extra bits of precision, and rounds for proper value
- Rounding occurs when converting...
- double to single precision
- floating point \# to an integer

Overview

- Reserve exponents, significands:

Exponent	Significand	Object
0	0	0
0	nonzero	Denorm
$1-254$	anything	$+/-$ fl. pt. \#
255	$\underline{0}$	$\frac{+-\infty}{\text { nonzero }}$
255	$\underline{N a N}$	

IEEE Four Rounding Modes
 - Round towards $+\infty$

-ALWAYS round "up": $2.1 \Rightarrow 3,-2.1 \Rightarrow-2$
-Round towards - ∞
-ALWAYS round "down": $1.9 \Rightarrow 1,-1.9 \Rightarrow-2$

- Truncate
- Just drop the last bits (round towards 0)
- Round to (nearest) even (default)
- Normal rounding, almost: $2.5 \Rightarrow 2,3.5 \Rightarrow 4$
- Like you learned in grade school
- Insures fairness on calculation
- Half the time we round up, other half down

Integer Multiplication (2/3)

- In MIPS, we multiply registers, so:
-32-bit value $\times 32$-bit value $=64$-bit value
-Syntax of Multiplication (signed):
- mult register1, register2
- Multiplies 32-bit values in those registers \& puts 64-bit product in special result regs:
- puts product upper half in hi, lower half in lo
- hi and lo are 2 registers separate from the 32 general purpose registers
- Use mfhi register \& mflo register to move from hi, lo to another register

Kusalo, Spring $2005 \odot$ UCB

Integer Multiplication (3/3)

- Example:
-in C: $\mathbf{a}=\mathrm{b}$ * c ;
- in MIPS:
- let be bs2; let che $\$ \mathbf{s} 3$; and let a be $\$ \mathbf{s} 0$ and $\$$ s 1 (since it may be up to 64 bits)
mult \$s2,\$s3 \# b*c
mfhi \$s0 \# upper half
of \# product
into \$s0
mflo \$s1
\# lower half of
\# product into \$s1
- Note: Often, we only care about the lower half of the product.

Integer Division (1/2)

- Paper and pencil example (unsigned):

1001 Quotient
Divisor $1 0 0 0 \longdiv { 1 0 0 1 0 1 0 }$ Dividend - 1000

10
101
1010
-1000
10 Remainder
(or Modulo result)

- Dividend = Quotient x Divisor + Remainder

Integer Division (2/2)

- Syntax of Division (signed):
- div register1, register2
- Divides 32-bit register 1 by 32-bit register 2:
- puts remainder of division in hi, quotient in lo
- Implements C division (/) and modulo (\%)
- Example in C: a =c /d;

$$
\mathbf{b}=\mathbf{c} \% \mathrm{~d}
$$

- in MIPS: $\mathrm{a} \leftrightarrow \$ \mathrm{~s} 0 ; \mathrm{b} \leftrightarrow \$ \mathbf{s} \mathbf{;} \mathbf{c} \leftrightarrow \$ \mathbf{s} \mathbf{2} ; \mathrm{d} \leftrightarrow \$ \mathrm{~s} 3$

div \$s2,\$s3	\# lo=c/d, hi=c\%d
mflo \$s0	\# get quotient
mfhi \$s1	\# get remainder

Crl

Unsigned Instructions \& Overflow

- MIPS also has versions of mult, div for unsigned operands:
multu
divu
- Determines whether or not the product and quotient are changed if the operands are signed or unsigned.
- MIPS does not check overflow on ANY signed/unsigned multiply, divide instr - Up to the software to check hi

FP Addition \& Subtraction

MIPS Floating Point Architecture

-Separate floating point instructions:

- Single

Precision:
add.s, sub.s, mul.s, div.s

- Double

Precision: add.d, sub.d, mul.d, div.d

- These are far more complicated than their integer counterparts
- Can take much longer to execute

MIPS Floating Point Architecture

- Problems:
- Inefficient to have different instructions take vastly differing amounts of time.
- Generally, a particular piece of data will not change FP \Leftrightarrow int within a program.

Only 1 type of instruction will be used on it.

- Some programs do no FP calculations
- It takes lots of hardware relative to integers to do FP fast

MIPS Floating Point Architecture

- 1990 Computer actually contains multiple separate chips:
- Processor: handles all the normal stuff
- Coprocessor 1: handles FP and only FP;
- more coprocessors?... Yes, later
- Today, FP coprocessor integrated with CPU, or cheap chips may leave out FP HW
- Instructions to move data between main processor and coprocessors:
-mfc0, mtc0, mfc1, mtc1, etc.

$$
\hat{X}=\mathbf{Y}
$$

- Appendix contains many more FP ops

Peer Instruction 1

- Let $\mathrm{X}=$ \# of floats between 1 and 2
- Let $Y=\#$ of floats between 2 and 3

$$
\begin{aligned}
& X>Y \\
& X<Y
\end{aligned}
$$

Peer Instruction 2

1. Converting float -> int -> float produces same float number
2. Converting int -> float -> int produces same int number
3. FP add is associative:
$(x+y)+z=x+(y+z)$
"And in conclusion..."

- Reserve exponents, significands:

Exponent	Significand	Object
0	0	0
0	nonzero	Denorm
$1-254$	$\frac{+1}{\text { anything }}$	$+/-\mathrm{fl}$ pt. \#
255	$\underline{0}$	$+/-\infty$
255	$\underline{\text { nonzero }}$	$\underline{\mathrm{NaN}}$

- Integer mult, div uses hi, lo regs -mfhi and mflo copies out.
- Four rounding modes (to even default)
- MIPS FL ops complicated, expensive Cal

