
CS61C L17 Introduction to MIPS: Instruction Representation III (1) Garcia © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 17 – Introduction to MIPS
 Instruction Representation III

Digital film network ⇒
 The UK is investing in

150 digital cinemas! Each will get
a 100 GiB lossless digital copy of
the film and show it on digital 2K

(2048x1080) projectors. USA?!
news.bbc.co.uk/1/hi/technology/4297865.stm

CS61C L17 Introduction to MIPS: Instruction Representation III (2) Garcia © UCB

Clarification - IEEE Four Rounding Modes

•Round towards + ∞
•ALWAYS round “up”: 2.1 ⇒ 3, -2.1 ⇒ -2

•Round towards - ∞
•ALWAYS round “down”: 1.9 ⇒ 1, -1.9 ⇒ -2

•Truncate
• Just drop the last bits (round towards 0)

•Round to (nearest) even (default)
•Normal rounding, almost: 2.5 ⇒ 2, 3.5 ⇒ 4
• Like you learned in grade school
• Insures fairness on calculation
•Half the time we round up, other half down

• This is just an example in base 10 to
show you the 4 modes.

• What really happens is…
1) in binary, not decimal!
2) at the lowest bit of the mantissa with the

guard bit(s) as our extra bit(s), and you need
to decide how these extra bit(s) affect the
result if the guard bits are “100…”

3) If so, you’re half-way between the
representable numbers.

E.g., 0.1010 is 5/8, halfway between our
representable 4/8 [1/2] and 6/8 [3/4]. Which
number do we round to? 4 modes!

CS61C L17 Introduction to MIPS: Instruction Representation III (3) Garcia © UCB

Outline

•Disassembly
•Pseudoinstructions and
“True” Assembly Language (TAL) v.
“MIPS” Assembly Language (MAL)

CS61C L17 Introduction to MIPS: Instruction Representation III (4) Garcia © UCB

Decoding Machine Language

•How do we convert 1s and 0s to C code?
Machine language ⇒ C?

•For each 32 bits:
• Look at opcode: 0 means R-Format, 2 or 3
mean J-Format, otherwise I-Format.
•Use instruction type to determine which
fields exist.
•Write out MIPS assembly code, converting
each field to name, register number/name,
or decimal/hex number.
• Logically convert this MIPS code into valid
C code. Always possible? Unique?

CS61C L17 Introduction to MIPS: Instruction Representation III (5) Garcia © UCB

Decoding Example (1/7)

•Here are six machine language
instructions in hexadecimal:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

•Let the first instruction be at address
4,194,304ten (0x00400000hex).
•Next step: convert hex to binary

CS61C L17 Introduction to MIPS: Instruction Representation III (6) Garcia © UCB

Decoding Example (2/7)

• The six machine language instructions in
binary:

 00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

• Next step: identify opcode and format

1, 4-31 rs rt immediate
0 rs rt rd functshamtR

I
J target address2 or 3

CS61C L17 Introduction to MIPS: Instruction Representation III (7) Garcia © UCB

Decoding Example (3/7)
•Select the opcode (first 6 bits)
to determine the format:

 00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

•Look at opcode:
0 means R-Format,
2 or 3 mean J-Format,
otherwise I-Format.
• Next step: separation of fields

R
R
I
R
I
J

Format:

CS61C L17 Introduction to MIPS: Instruction Representation III (8) Garcia © UCB

Decoding Example (4/7)

•Fields separated based on format/opcode:

0 0 0 2 370
0 0 5 8 420
4 8 0 +3
0 2 4 2 320
8 5 5 -1
2 1,048,577

•Next step: translate (“disassemble”)
to MIPS assembly instructions

R
R
I
R
I
J

Format:

CS61C L17 Introduction to MIPS: Instruction Representation III (9) Garcia © UCB

Decoding Example (5/7)

•MIPS Assembly (Part 1):
Address: Assembly instructions:
0x00400000 or $2,$0,$0
0x00400004 slt $8,$0,$5
0x00400008 beq $8,$0,3
0x0040000c add $2,$2,$4
0x00400010 addi $5,$5,-1
0x00400014 j 0x100001

•Better solution: translate to more
meaningful MIPS instructions (fix the
branch/jump and add labels, registers)

CS61C L17 Introduction to MIPS: Instruction Representation III (10) Garcia © UCB

Decoding Example (6/7)

•MIPS Assembly (Part 2):

or $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

•Next step: translate to C code
(be creative!)

CS61C L17 Introduction to MIPS: Instruction Representation III (11) Garcia © UCB

Decoding Example (7/7)
•After C code (Mapping below)

$v0: product
$a0: multiplicand
$a1: multiplier

product = 0;
while (multiplier > 0) {

product += multiplicand;
multiplier -= 1;

}

Before Hex:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

Demonstrated Big 61C
Idea: Instructions are
just numbers, code is
treated like data

 or $v0,$0,$0
Loop: slt $t0,$0,$a1
 beq $t0,$0,Exit
 add $v0,$v0,$a0
 addi $a1,$a1,-1
 j Loop
Exit:

CS61C L17 Introduction to MIPS: Instruction Representation III (12) Garcia © UCB

Administrivia

•Thanks to TAs who filled in last week
•SIGCSE 2005 was GREAT
•Your midterm is in 7 days!

CS61C L17 Introduction to MIPS: Instruction Representation III (13) Garcia © UCB

Review from before: lui
•So how does lui help us?
•Example:

addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add $t0,$t0,$at

•Now each I-format instruction has only a 16-
bit immediate.

•Wouldn’t it be nice if the assembler
would this for us automatically?

- If number too big, then just automatically
replace addi with lui, ori, add

CS61C L17 Introduction to MIPS: Instruction Representation III (14) Garcia © UCB

True Assembly Language (1/3)
•Pseudoinstruction: A MIPS instruction
that doesn’t turn directly into a machine
language instruction, but into other
MIPS instrucitons
•What happens with pseudoinstructions?
• They’re broken up by the assembler into
several “real” MIPS instructions.
•But what is a “real” MIPS instruction?
Answer in a few slides

•First some examples

CS61C L17 Introduction to MIPS: Instruction Representation III (15) Garcia © UCB

Example Pseudoinstructions

•Register Move
move reg2,reg1
Expands to:
add reg2,$zero,reg1

•Load Immediate
li reg,value
If value fits in 16 bits:
addi reg,$zero,value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

CS61C L17 Introduction to MIPS: Instruction Representation III (16) Garcia © UCB

True Assembly Language (2/3)
•Problem:
•When breaking up a pseudoinstruction,
the assembler may need to use an extra
reg.
• If it uses any regular register, it’ll
overwrite whatever the program has put
into it.

•Solution:
•Reserve a register ($1, called $at for
“assembler temporary”) that assembler
will use to break up pseudo-instructions.
•Since the assembler may use this at any
time, it’s not safe to code with it.

CS61C L17 Introduction to MIPS: Instruction Representation III (17) Garcia © UCB

Example Pseudoinstructions

•Rotate Right Instruction
ror reg, value
Expands to:
srl $at, reg, value
sll reg, reg, 32-value
or reg, reg, $at

0

0

• “No OPeration” instruction
nop
Expands to instruction = 0ten,
sll $0, $0, 0

CS61C L17 Introduction to MIPS: Instruction Representation III (18) Garcia © UCB

Example Pseudoinstructions
•Wrong operation for operand

addu reg,reg,value # should be addiu

If value fits in 16 bits, addu is changed to:
addiu reg,reg,value
else:
lui $at,upper 16 bits of value
ori $at,$at,lower 16 bits
addu reg,reg,$at

•How do we avoid confusion about whether
we are talking about MIPS assembler with
or without pseudoinstructions?

CS61C L17 Introduction to MIPS: Instruction Representation III (19) Garcia © UCB

True Assembly Language (3/3)
•MAL (MIPS Assembly Language): the set
of instructions that a programmer may
use to code in MIPS; this includes
pseudoinstructions
•TAL (True Assembly Language): set of
instructions that can actually get
translated into a single machine
language instruction (32-bit binary string)
•A program must be converted from MAL
into TAL before translation into 1s & 0s.

CS61C L17 Introduction to MIPS: Instruction Representation III (20) Garcia © UCB

Questions on Pseudoinstructions

•Question:
•How does MIPS recognize pseudo-
instructions?

•Answer:
• It looks for officially defined pseudo-
instructions, such as ror and move
• It looks for special cases where the
operand is incorrect for the operation
and tries to handle it gracefully

CS61C L17 Introduction to MIPS: Instruction Representation III (21) Garcia © UCB

Rewrite TAL as MAL

•TAL:
or $v0,$0,$0

Loop: slt $t0,$0,$a1
beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

•This time convert to MAL
• It’s OK for this exercise to
make up MAL instructions

CS61C L17 Introduction to MIPS: Instruction Representation III (22) Garcia © UCB

Rewrite TAL as MAL (Answer)
•TAL: or $v0,$0,$0

Loop: slt $t0,$0,$a1
beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

•MAL:
li $v0,0

Loop: bge $zero,$a1,Exit
add $v0,$v0,$a0
sub $a1,$a1,1
j Loop

Exit:

CS61C L17 Introduction to MIPS: Instruction Representation III (23) Garcia © UCB

Peer Instruction

Which of the instructions below
are MAL and which are TAL?
A.addi $t0, $t1, 40000
B.beq $s0, 10, Exit
C.sub $t0, $t1, 1

 ABC
1: MMM
2: MMT
3: MTM
4: MTT
5: TMM
6: TMT
7: TTM
8: TTT

CS61C L17 Introduction to MIPS: Instruction Representation III (25) Garcia © UCB

In conclusion

•Disassembly is simple and starts by
decoding opcode field.
•Be creative, efficient when authoring C

•Assembler expands real instruction set
(TAL) with pseudoinstructions (MAL)
•Only TAL can be converted to raw binary
•Assembler’s job to do conversion
•Assembler uses reserved register $at
•MAL makes it much easier to write MIPS

