
CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (1) Garcia © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 18 – Running a Program I
aka Compiling, Assembling, Linking, Loading (CALL)

Cloak of invisibility?! ⇒
 Researchers at U Penn have

discovered a type of “invisibility
shielding” to camouflage an object with

a “plasmonic” screen that suppresses
scattering of single-λ light. Star Trek?

www.nature.com/news/2005/050228/full/050228-1.html
CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (2) Garcia © UCB

Overview

• Interpretation vs Translation
•Translating C Programs
•Compiler
•Assembler
•Linker (next time)
•Loader (next time)

•An Example (next time)

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (3) Garcia © UCB

Language Continuum

• In general, we interpret a high level
language if efficiency is not critical or
translated to a lower level language to
improve performance

Easy to program
Inefficient to interpret

Efficient
Difficult to program

Scheme
Java
C++ C Assembly machine language

Java bytecode

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (4) Garcia © UCB

Interpretation vs Translation

•How do we run a program written in a
source language?
• Interpreter: Directly executes a
program in the source language
•Translator: Converts a program from
the source language to an equivalent
program in another language
•For example, consider a Scheme
program foo.scm

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (5) Garcia © UCB

Interpretation

Scheme program: foo.scm

Scheme Interpreter

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (6) Garcia © UCB

Translation

Scheme program: foo.scm

Hardware

Scheme Compiler

Executable(mach lang pgm): a.out

°Scheme Compiler is a translator from
Scheme to machine language.

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (7) Garcia © UCB

Interpretation

•Any good reason to interpret machine
language in software?
•SPIM – useful for learning / debugging
•Apple Macintosh conversion
•Switched from Motorola 680x0
instruction architecture to PowerPC.
•Could require all programs to be re-
translated from high level language
• Instead, let executables contain old
and/or new machine code, interpret old
code in software if necessary

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (8) Garcia © UCB

Interpretation vs. Translation?
•Easier to write interpreter
• Interpreter closer to high-level, so
gives better error messages (e.g., SPIM)
•Translator reaction: add extra information
to help debugging (line numbers, names)

• Interpreter slower (10x?) but code is
smaller (1.5X to 2X?)
• Interpreter provides instruction set
independence: run on any machine
•Apple switched to PowerPC. Instead of
retranslating all SW, let executables
contain old and/or new machine code,
interpret old code in software if necessary

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (9) Garcia © UCB

Steps to Starting a Program
C program: foo.c

Compiler
Assembly program: foo.s

Assembler

Linker
Executable(mach lang pgm): a.out

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (10) Garcia © UCB

Compiler

• Input: High-Level Language Code
(e.g., C, Java such as foo.c)
•Output: Assembly Language Code
(e.g., foo.s for MIPS)
•Note: Output may contain
pseudoinstructions
•Pseudoinstructions: instructions that
assembler understands but not in
machine (last lecture) For example:
• mov $s1,$s2 ⇒ or $s1,$s2,$zero

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (11) Garcia © UCB

Upcoming Calendar

Intro to
SDS II

Running
Program I

Wed

Intro to
SDS III

Midterm
grades out

SDSIntro to
SDS I

Midterm @
7pm

1 Le Conte

#8
Midterm

week
(review
Sun @

2pm 10
Evans)

Running
Program II

Running
Program

MIPS III
#7

This
week

FriThurs LabMonWeek #

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (12) Garcia © UCB

Administrivia…Midterm in 5 days!
• 2005-03-07 @ 7-10pm in 1 Piminitel
• Covers labs,hw,proj,lec up to SDS
• Last sem midterm + answers on www
• Bring…

• NO backpacks, cells, calculators, pagers, PDAs
• 2 Pens (we’ll provide write-in exam booklets)
• One handwritten (both sides) 8.5”x11” paper
• One green sheet (corrections below to bugs

from “Core Instruction Set”)
1) Opcode wrong for Load Word.

It should say 23hex, not 0 / 23hex.
2) sll and srl should shift values in R[rt], not R[rs]

i.e. sll/srl: R[rd] = R[rt] << shamt

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (13) Garcia © UCB

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (14) Garcia © UCB

Assembler

• Input: Assembly Language Code
(e.g., foo.s for MIPS)
•Output: Object Code, information tables
(e.g., foo.o for MIPS)
•Reads and Uses Directives
•Replace Pseudoinstructions
•Produce Machine Language
•Creates Object File

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (15) Garcia © UCB

Assembler Directives (p. A-51 to A-53)

•Give directions to assembler, but do not
produce machine instructions
 .text: Subsequent items put in user text
segment (machine code)
 .data: Subsequent items put in user data
segment (binary rep of data in source file)
 .globl sym: declares sym global and can
be referenced from other files
 .asciiz str: Store the string str in
memory and null-terminate it
.word w1…wn: Store the n 32-bit quantities
in successive memory words

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (16) Garcia © UCB

Pseudoinstruction Replacement
• Asm. treats convenient variations of machine

language instructions as if real instructions
Pseudo: Real:
 subu $sp,$sp,32 addiu $sp,$sp,-32

 sd $a0, 32($sp) sw $a0, 32($sp)
sw $a1, 36($sp)

 mul $t7,$t6,$t5 mul $t6,$t5
mflo $t7

 addu $t0,$t6,1 addiu $t0,$t6,1

 ble $t0,100,loop slti $at,$t0,101
bne $at,$0,loop

 la $a0, str lui $at,left(str)
 ori $a0,$at,right(str)

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (17) Garcia © UCB

Producing Machine Language (1/2)

•Simple Case
•Arithmetic, Logical, Shifts, and so on.
•All necessary info is within the
instruction already.

•What about Branches?
•PC-Relative
•So once pseudoinstructions are
replaced by real ones, we know by how
many instructions to branch.

•So these can be handled easily.
CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (18) Garcia © UCB

Producing Machine Language (2/2)

•What about jumps (j and jal)?
• Jumps require absolute address.

•What about references to data?
•la gets broken up into lui and ori
•These will require the full 32-bit address
of the data.

•These can’t be determined yet, so we
create two tables…

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (19) Garcia © UCB

Symbol Table
•List of “items” in this file that may be
used by other files.
•What are they?
•Labels: function calling
•Data: anything in the .data section;
variables which may be accessed across
files

•First Pass: record label-address pairs
•Second Pass: produce machine code
•Result: can jump to a later label without
first declaring it

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (20) Garcia © UCB

Relocation Table

•List of “items” for which this file
needs the address.
•What are they?
•Any label jumped to: j or jal
- internal
- external (including lib files)

•Any piece of data
- such as the la instruction

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (21) Garcia © UCB

Object File Format
•object file header: size and position of
the other pieces of the object file
• text segment: the machine code
•data segment: binary representation
of the data in the source file
• relocation information: identifies lines
of code that need to be “handled”
•symbol table: list of this file’s labels
and data that can be referenced
•debugging information

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (22) Garcia © UCB

Peer Instruction

1. Assembler knows where a module’s data &
instructions are in relation to other modules.

2. Assembler will ignore the instruction
Loop:nop because it does nothing.

3. Java designers used an interpreter (rather
than a translater) mainly because of (at least
one of): ease of writing, better error msgs,
smaller object code.

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (23) Garcia © UCB

Peer Instruction Answer

1. Assembler knows where a module’s data &
instructions are in relation to other modules.

2. Assembler will ignore the instruction
Loop:nop because it does nothing.

3. Java designers used an interpreter (rather
than a translater) mainly because of (at least
one of): ease of writing, better error msgs,
smaller object code.

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

1. Assembler only sees one compiled program at a time,
that’s why it has to make a symbol & relocation table.
It’s the job of the linker to link them all together…F!

2. Assembler keeps track of all labels in symbol table…F!
3. Java designers used

an interpreter mainly
because of code portability…F!

CS61C L18 R unning a Program aka Compiling, Assembling, Loading, Linking (CALL) I (24) Garcia © UCB

And in conclusion…
C program: foo.c

Compiler
Assembly program: foo.s

Assembler

Linker
Executable(mach lang pgm): a.out

Loader
Memory

Object(mach lang module): foo.o

lib.o

