inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures

Lecture 22 -
Representations of Combinatorial Logic Circuits

Lecturer PSOE Dan Garcia

www . cs . berkeley . edu/~ddgarcia
Sony PSP! \Rightarrow
People in the know say this will be bigger than the iPod. It plays video games, videos, music \& photos. \$250!

www.us.playstation.com/consoles.aspx?id=4 CS61C L22 Representations of Combinatorial Logic Circuits (1)

Review...

- We use feedback to maintain state
- Register files used to build memories
- D-FlipFlops used for Register files
- Clocks usually tied to D-FlipFlop load
- Setup and Hold times important
- Pipeline big-delay CL for faster clock
-Finite State Machines extremely useful
- You'll see them again in 150, 152 \& 164

Representations of CL Circuits...

-Truth Tables

- Logic Gates
- Boolean Algebra

Truth Tables

TT Example \#1: 1 iff one (not both) $\mathrm{a}, \mathrm{b}=1$

TT Example \#2: 2-bit adder

TT Example \#3: 32-bit unsigned adder

A	B	C
$000 \ldots 0$	$000 \ldots 0$	$000 \ldots 00$
$000 \ldots 0$	$000 \ldots 1$	$000 \ldots 01$
.	\cdot	\cdot
.	\ldots	\cdot
How		
$111 \ldots 1$	$111 \ldots 1$	$111 \ldots 10$

TT Example \#3: 3-input majority circuit

a	b	c	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logic Gates (1/2)

And vs. Or review - Dan's mnemonic

AND Gate

Symbol

Logic Gates (2/2)

2-input gates extend to n-inputs

- N -input XOR is the only one which isn't so obvious
- It's simple: XOR is a 1 iff the \# of 1s at its input is odd \Rightarrow

a	b	c	y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Truth Table \Rightarrow Gates (e.g., majority circ.)

Truth Table \Rightarrow Gates (e.g., FSM circ.)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

Boolean Algebra

- George Boole, 19 ${ }^{\text {th }}$ Century mathematician
- Developed a mathematical system (algebra) involving logic

- later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA

Boolean Algebra (e.g., for majority fun.)

$$
\begin{gathered}
y=a \cdot b+a \cdot c+b \cdot c \\
y=a b+a c+b c
\end{gathered}
$$

Boolean Algebra (e.g., for FSM)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

or equivalently...

$$
\mathrm{y}=\mathrm{PS}_{1} \cdot \overline{\mathrm{PS}_{0}} \cdot \text { INPUT }
$$

BA: Circuit \& Algebraic Simplification

original circuit
equation derived from original circuit
algebraic simplification
BA also great for circuit verification Circ $X=$ Circ Y ? use BA to prove!
simplified circuit

Laws of Boolean Algebra

$$
\begin{gathered}
x \cdot \bar{x}=0 \\
x \cdot 0=0 \\
x \cdot 1=x \\
x \cdot x=x \\
x \cdot y=y \cdot x \\
(x y) z=x(y z) \\
x(y+z)=x y+x z
\end{gathered}
$$

$$
(x+y)+z=x+(y+z)
$$

$$
x+y z=(x+y)(x+z)
$$

$$
\begin{aligned}
& (x+y) x=x \\
& (x+y)=\bar{x} \cdot \bar{y}
\end{aligned}
$$

complementarity laws of 0's and 1's identities
idempotent law
commutativity
associativity
distribution
uniting theorem
DeMorgan's Law

Boolean Algebraic Simplification Example

$$
\begin{aligned}
y & =a b+a+c & & \\
& =a(b+1)+c & & \text { distribution, identity } \\
& =a(1)+c & & \text { law of } 1 \text { 's } \\
& =a+c & & \text { identity }
\end{aligned}
$$

Canonical forms (1/2)

Canonical forms (2/2)

$$
\begin{aligned}
y & =\bar{a} \bar{b} \bar{c}+\bar{a} \bar{b} c+a \bar{b} \bar{c}+a b \bar{c} & & \\
& =\bar{a} \bar{b}(\bar{c}+c)+a \bar{c}(\bar{b}+b) & & \text { distribution } \\
& =\bar{a} \bar{b}(1)+a \bar{c}(1) & & \text { complementarity } \\
& =\bar{a} \bar{b}+a \bar{c} & & \text { identity }
\end{aligned}
$$

Administrivia

- Midterm Regrades
- If you want a regrade...
- Explain your reasoning in a paragraph on a piece of paper along with the
- Staple that to the front of your exam
- Return your exam to your TA
- We will regrade your entire exam
- Your score MAY go down

Peer Instruction

A. $(a+b) \cdot(\bar{a}+b)=b$
B. N-input gates can be thought of cascaded 2 -input gates. I.e., $(\mathrm{a} \Delta \mathrm{bc} \Delta \mathrm{d} \Delta \mathrm{e})=\mathrm{a} \Delta(\mathrm{bc} \Delta(\mathrm{d} \Delta \mathrm{e}))$ where Δ is one of AND, OR, XOR, NAND
C. You can use NOR(s) with clever wiring to simulate AND, OR, \& NOT

ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

Peer Instruction Answer

A. $(a+b) \cdot(\bar{a}+b)=b$
B. N-input gates can be thought of cascaded 2 -input gates. I.e., $(\mathrm{a} \Delta \mathrm{bc} \Delta \mathrm{d} \Delta \mathrm{e})=\mathrm{a} \Delta(\mathrm{bc} \Delta(\mathrm{d} \Delta \mathrm{e}))$ where Δ is one of AND, OR, XOR, NAND
C. You can use NOR(s) with clever wiring to simulate AND, OR, \& NOT

CS61C L22 Representations of Combinatorial Logic Circuits (25)

ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

Peer Instruction Answer (B)

"And In conclusion..."

- Use this table and techniques we learned to transform from 1 to another

Cal

\qquad

