inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures

Lecture 22 – Representations of Combinatorial Logic Circuits

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Sony PSP! ⇒ People in the

know say this will be bigger than the iPod. It plays video games, videos, music & photos. \$250!

www.us.playstation.com/consoles.aspx?id=4

CS61C L22 Representations of Combinatorial Logic Circuits (1)

- We use feedback to maintain state
- Register files used to build memories
- D-FlipFlops used for Register files
- Clocks usually tied to D-FlipFlop load
 Setup and Hold times important
- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
 - You'll see them again in 150, 152 & 164

Representations of CL Circuits...

- Truth Tables
- Logic Gates
- Boolean Algebra

Truth Tables

	a	b	c	d	У
	0	0	0	0	F(0,0,0,0)
	0	0	0	1	F(0,0,0,1)
	0	0	1	0	F(0,0,1,0)
	0	0	1	1	F(0,0,1,1)
a	0	1	0	0	F(0,1,0,0)
	0	1	0	1	F(0,1,0,1)
	0	1	1	0	F(0,1,1,0)
C <	0	1	1	1	F(0,1,1,1)
	1	0	0	0	F(1,0,0,0)
$\alpha \longrightarrow \beta$	1	0	0	1	F(1,0,0,1)
	1	0	1	0	F(1,0,1,0)
	1	0	1	1	F(1,0,1,1)
	1	1	0	0	F(1,1,0,0)
	1	1	0	1	F(1,1,0,1)
	1	1	1	0	F(1,1,1,0)
al	1	1	1	1	F(1,1,1,1)

TT Example #1: 1 iff one (not both) a,b=1

a	b	У
0	0	0
0	1	1
1	0	1
1	1	0

TT Example #2: 2-bit adder

TT Example #3: 32-bit unsigned adder

CS61C L22 Representations of Combinatorial Logic Circuits (7)

TT Example #3: 3-input majority circuit

a	b	C	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logic Gates (1/2)

Garcia © UCB

And vs. Or review – Dan's mnemonic

AND Gate

Definition

CS61C L22 Representations of Combinatorial Logic Circuits (10)

Logic Gates (2/2)

	a - m	ab	С
	$(1) \rightarrow (2)$	00	0
XOR	D	01	1
		10	1
		11	0
	a - n	ab	С
	L D-C	00	1
NAND	D-D	01	1
		10	1
		11	0
	0-5	ab	С
	Б_))) — С	00	1
NOR	D - U	01	0
		10	0
		11	0

CS61C L22 Representations of Combinatorial Logic Circuits (11)

2-input gates extend to n-inputs

- N-input XOR is the only one which isn't so obvious
- It's simple: XOR is a 1 iff the # of 1s at its input is odd ⇒

Truth Table ⇒ Gates (e.g., majority circ.)

Truth Table ⇒ Gates (e.g., FSM circ.)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

or equivalently...

Garcia © UCB

Boolean Algebra

- George Boole, 19th Century mathematician
- Developed a mathematical system (algebra) involving logic
- later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA

Boolean Algebra (e.g., for majority fun.)

 $y = a \cdot b + a \cdot c + b \cdot c$

y = ab + ac + bc

CS61C L22 Representations of Combinatorial Logic Circuits (16)

Boolean Algebra (e.g., for FSM)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

or equivalently...

$y = PS_1 \cdot \overline{PS_0} \cdot INPUT$

CS61C L22 Representations of Combinatorial Logic Circuits (17)

BA: Circuit & Algebraic Simplification

original circuit

equation derived from original circuit

algebraic simplification

BA also great for circuit <u>verification</u> Circ X = Circ Y? use BA to prove!

simplified circuit

Laws of Boolean Algebra

$x \cdot \overline{x} = 0$ $x + \overline{x} = 1$ $x \cdot 0 = 0$ x + 1 = 1 $x \cdot 1 = x$ x + 0 = xx + x = x $x \cdot x = x$ $x \cdot y = y \cdot x$ x + y = y + x(xy)z = x(yz) (x+y) + z = x + (y+z) $x(y+z) = xy + xz \qquad x + yz = (x+y)(x+z)$ (x+y)x = xxy + x = x $\overline{(x+y)} = \overline{x} \cdot \overline{y}$ $\overline{x \cdot y} = \overline{x} + \overline{y}$

complementarity laws of 0's and 1's identities idempotent law commutativity associativity distribution uniting theorem DeMorgan's Law

CS61C L22 Representations of Combinatorial Logic Circuits (19)

Boolean Algebraic Simplification Example

$$y = ab + a + c$$

= $a(b+1) + c$ distribution, identity
= $a(1) + c$ law of 1's
= $a + c$ identity

Canonical forms (1/2)

Sum-of-products (ORs of ANDs)

Canonical forms (2/2)

$$y = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + a\overline{b}\overline{c} + ab\overline{c}$$

$$= \overline{a}\overline{b}(\overline{c} + c) + a\overline{c}(\overline{b} + b) \quad distribution$$

$$= \overline{a}\overline{b}(1) + a\overline{c}(1) \quad complementarity$$

$$= \overline{a}\overline{b} + a\overline{c} \quad identity$$

CS61C L22 Representations of Combinatorial Logic Circuits (22)

Administrivia

Midterm Regrades

- If you want a regrade...
- Explain your reasoning in a paragraph on a piece of paper along with the
- Staple that to the front of your exam
- Return your exam to your TA
- We will regrade your entire exam
 - Your score MAY go down

CS61C L22 Representations of Combinatorial Logic Circuits (23)

- A. $(a+b) \cdot (\overline{a}+b) = b$
- B. N-input gates can be thought of cascaded 2-input gates. I.e., $(a \Delta bc \Delta d \Delta e) = a \Delta (bc \Delta (d \Delta e))$ where Δ is one of AND, OR, XOR, NAND
- C. You can use NOR(s) with clever wiring to simulate AND, OR, & NOT

CS61C L22 Representations of Combinatorial Logic Circuits (24)

ABC

ननन

FFT

 $\mathbf{T}\mathbf{T}\mathbf{T}$

 $\mathbf{F}\mathbf{T}\mathbf{T}$

קקע

TFT

TTF

2.

२・

5.

6 ·

8.

Peer Instruction Answer

- A. $(a+b) \cdot (\overline{a}+b) = b$
- B. N-input gates can be thought of cascaded 2-input gates. I.e., $(a \Delta bc \Delta d \Delta e) = a \Delta (bc \Delta (d \Delta e))$ where Δ is one of AND, OR, XOR, NAND
- C. You can use NOR(s) with clever wiring to simulate AND, OR, & NOT

CS61C L22 Representations of Combinatorial Logic Circuits (25)

ABC

ननन

FFT

 $\mathbf{T}\mathbf{T}\mathbf{T}$

FTT

קקע

TFT

ͲͲϝ

ጥጥጥ

२・

5.

6 ·

8.

Peer Instruction Answer (B)

"And In conclusion..."

• Use this table and techniques we learned to transform from 1 to another

