inst.eecs.berkeley.edu/~cs61c

CS61C : Machine Structures

Lecture 24 Latches

Lecturer PSOE Dan Garcia

www . cs.berkeley.edu/~ddgarcia

SETI@Home? Yak! \Rightarrow

The Honeynet project uses "honeypot" PCs \& monitors how long it takes (sec-min) for them to be hacked and what happens. 1 Mebi "botnets" are used for spam, viruses, DDoS, Google AdSense, hacking gambling, id theft! news.bbc.co.uk/2/hi/technology/4354109.stm

Last time: Extremely Clever Subtractor

2-Input Multiplexor (MUX) Review

Symbol

Definition

Review...

- Use muxes to select among input
- S input bits selects 2^{s} inputs
- Each input can be n-bits wide, indep of S
- Implement muxes hierarchically
- ALU can be implemented using a mux
- Coupled with basic block elements
- N-bit adder-subtractor done using N 1-bit adders with XOR gates on input
- XOR serves as conditional inverter

Combinational Logic from 10 miles up

- CL circuits simply compute a binary function (e.g., from truthtable)
- Once the inputs go away, the outputs go away, nothing is saved, no STATE
- Similar to a function in Scheme with no set! or define to save anything

$$
\begin{aligned}
& \text { (define (xor } \mathrm{x} y) \\
& \quad(\text { or }(\text { and }(\operatorname{not} x) y) \\
& \quad(\text { and } x(\operatorname{not} y))))
\end{aligned}
$$

- How does the computer remember data? [e.g., for registers]

State Circuits Overview

- State circuits have feedback, e.g.

- Output is function of inputs + fed-back signals.
- Feedback signals are the circuit's state.
- What aspects of this circuit might cause complications?

A simpler state circuit: two inverters

- When started up, it's internally stable.
- Provide an or gate for coordination:

An R-S latch (cross-coupled NOR gates)

-S means "set" (to 1), R means "reset" (to 0).

A B NOR
001
010

- Adding Q' gives standard RS-latch:

Truth table
S R Q
0 O hold (keep value)
010
101
11 unstable

An R-S latch (in detail)

Truth table

R-S latch in scheme

It's really just... recursion! (demo)

A B NOR
(define (rs-latch res)
001
010
100
110
(define (rsl-h q qbar) (rsl-h (nor r qbar)
(nor q s)))
(rsl-h \#t \#f))

State diagram

- States represent possible output values.
- Transitions represent changes between states based on inputs.

What does it mean to "clobber" midterm?

- You STILL have to take the final even if you aced the midterm!
- The final will contain midterm-material Qs and new, post-midterm Qs
- They will be graded separately
- If you do "better" on the midterm-material, we will clobber your midterm with the "new" score! If you do worse, midterm unchanged.
- What does "better" mean?
- Better w.r.t. Standard Deviations around mean
- What does "new" mean?
- Score based on remapping St. Dev. score on final midterm-material to midterm score St. Dev.

"Clobber the midterm" example

- Midterm

- Mean: 47
- Standard Deviation: 14
- You got a 33, one o below

- Final Midterm-Material Questions
- Mean: 40
- Standard Deviation: 20
- You got a 60, one σ above
- Your new midterm score is now mean + σ

Col $=47+14=61$ (\sim double your old score)!

Controlling R-S latch with a clock

- Can't change R and S while clock is active.

```
A B NOR
001
010
```

clock

- Clocked latches are called flip-flops.

D flip-flop are what we really use

- Inputs C (clock) and D.
- When C is 1, latch open, output = D (even if it changes, "transparent latch")
-When C is 0 , latch closed, output $=$ stored value.

```
C D AND
O 0
O 1 0
10}
1 1 1
```


D flip-flop details

- We don't like transparent latches
-We can build them so that the latch is only open for an instant, on the rising edge of a clock (as it goes from $0 \Rightarrow 1$)

Timing Diagram

But do you really understand NORs?

- If one input is 1 , what is a NOR?
- If one input is 0 , what is a NOR?

```
A B NOR
O 0 1
O 1 0
100
1 10
```

 NOR

But do you really understand NANDs?

- If one input is 1 , what is a NAND?
- If one input is 0 , what is a NAND?

A B NAND
 001
 $\begin{array}{lll}0 & 1 & 1\end{array}$
 101
 110

Peer instruction

Pick the truth table that results from

 substituting NAND gates for the NOR gates in the R-S latch:

Peer Instruction

A. $(a+b) \cdot(\bar{a}+b)=b$
B. N-input gates can be thought of cascaded 2input gates. l.e., $(\mathrm{a} \Delta \mathrm{bc} \Delta \mathrm{d} \Delta \mathrm{e})=\mathrm{a} \Delta(\mathrm{bc} \Delta(\mathrm{d} \Delta \mathrm{e}))$ where Δ is one of AND, OR, XOR, NAND
C. You can use NOR(s) with clever wiring to simulate AND, OR, \& NOT

ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT
Garcia © UCB

Peer Instruction

A. Truth table for mux with 4-bits of signals has 2^{4} rows
B. We could cascade $\mathbf{N} 1$-bit shifters to make 1 N -bit shifter for sll, srl
C. If 1-bit adder delay is T , the N -bit adder delay would also be T

	ABC
$1:$	FFF
$2:$	FFT
$3:$	FTF
4:	FTT
5:	TFF
6:	TFT
$7:$	TTF
8:	TTT

Garcia © UCB

"And In conclusion..."

- We use feedback to maintain state
- RS-Latch the simplest memory element
- We're not allowed to assert both \mathbf{R} and \mathbf{S}
- Clocks tell us when latches change
- D-FlipFlops used to build Register files

