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CS61C : Machine Structures

 Lecture 25 –
 Single Cycle CPU Datapath

Paid to write a Mac virus?! ⇒
 A Symantec employee claimed

 “Macs aren’t more secure, there are just fewer
virus writers!”. DVForge, believing that Macs
WERE more secure, initially offered $25K to

anyone ($50K if from Symantec) who could infect
a honeypot mac. They later retracted the offer.

www.dvforge.com/virus.shtml
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Anatomy: 5 components of any Computer
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Outline of Today’s Lecture

• Design a processor: step-by-step
• Requirements of the Instruction Set
• Hardware components that match the
instruction set requirements
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How to Design a Processor: step-by-step
• 1. Analyze instruction set architecture (ISA)
=> datapath requirements

• meaning of each instruction is given by the
register transfers

• datapath must include storage element for ISA
registers

• datapath must support each register transfer
• 2. Select set of datapath components and
establish clocking methodology

• 3. Assemble datapath meeting requirements
• 4. Analyze implementation of each
instruction to determine setting of control
points that effects the register transfer.

•       5. Assemble the control logic
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Review: The MIPS Instruction Formats
• All MIPS instructions are 32 bits long.  3 formats:

• R-type

• I-type

• J-type

• The different fields are:
• op: operation (“opcode”) of the instruction
• rs, rt, rd: the source and destination register specifiers
• shamt: shift amount
• funct: selects the variant of the operation in the “op” field
• address / immediate: address offset or immediate value
• target address: target address of jump instruction

op target address
02631

6 bits 26 bits

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt address/immediate
016212631

6 bits 16 bits5 bits5 bits
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Step 1a: The MIPS-lite Subset for today
• ADDU and SUBU

•addu rd,rs,rt
•subu rd,rs,rt

• OR Immediate:
•ori rt,rs,imm16

• LOAD and
STORE Word
•lw rt,rs,imm16
•sw rt,rs,imm16

• BRANCH:
•beq rs,rt,imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits
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Register Transfer Language
• RTL gives the meaning of the instructions

• All start by fetching the instruction

{op , rs , rt , rd , shamt , funct} = MEM[ PC ]

{op , rs , rt ,   Imm16}                = MEM[ PC ]

inst Register Transfers
ADDU R[rd] = R[rs] + R[rt]; PC = PC + 4
SUBU R[rd] = R[rs] – R[rt]; PC = PC + 4
ORI R[rt] = R[rs] | zero_ext(Imm16); PC = PC + 4
LOAD R[rt] = MEM[ R[rs] + sign_ext(Imm16)];PC = PC + 4
STORE MEM[ R[rs] + sign_ext(Imm16) ] = R[rt];PC = PC + 4
BEQ   if ( R[rs] == R[rt] ) then
                  PC = PC + 4 + (sign_ext(Imm16) || 00)
           else PC = PC + 4

CS61C L25 Single Cycle CPU Datapath (8) Garcia © UCB

Step 1: Requirements of the Instruction Set
• Memory (MEM)

• instructions & data
• Registers (R: 32 x 32)

• read RS
• read RT
• Write RT or RD

• PC
• Extender (sign extend)
• Add and Sub register or extended
immediate

• Add 4 or extended immediate to PC
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Step 2: Components of the Datapath

•Combinational Elements
•Storage Elements

• Clocking methodology
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Combinational Logic Elements (Building Blocks)

•Adder

•MUX

•ALU
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ALU Needs for MIPS-lite + Rest of MIPS
• Addition, subtraction, logical OR, ==:
ADDU  R[rd] = R[rs] + R[rt]; ...

SUBU  R[rd] = R[rs] – R[rt]; ... 

ORI R[rt] = R[rs] |
zero_ext(Imm16)...

BEQ  if ( R[rs] == R[rt] )...

• Test to see if output == 0 for any ALU
operation gives == test. How?

• P&H also adds AND,
Set Less Than (1 if A < B, 0 otherwise)

• ALU follows chap 5
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Administrivia
• Final Exam location TBA (exam grp 5)
•Sat, 2005-05-14, 12:30–3:30pm
•ALL students are required to complete ALL
of the exam (even if you aced the midterm)
•Same format as the midterm

- 3 Hours
- Closed book, except for 2 study sheets + green
- Leave your backpacks, books at home

• Homework 6 out today, due in a week
(mon)
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Storage Element: Idealized Memory

• Memory (idealized)
• One input bus: Data In
• One output bus: Data Out

• Memory word is selected by:
• Address selects the word to put on Data Out
• Write Enable = 1: address selects the memory

word to be written via the Data In bus
• Clock input (CLK)

• The CLK input is a factor ONLY during write
operation

• During read operation, behaves  as a
combinational logic block:

- Address valid => Data Out valid after “access time.”

Clk

Data In

Write Enable

32 32
DataOut

Address
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Clk

Data In

Write Enable

N N
Data Out

Storage Element: Register (Building Block)

• Similar to D Flip Flop except
- N-bit input and output
- Write Enable input

• Write Enable:
- negated (or deasserted)  (0):

Data Out will not change
- asserted (1):

Data Out will become Data In
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Storage Element: Register File
• Register File consists of 32 registers:

• Two 32-bit output busses:
    busA and busB
• One 32-bit input bus: busW

• Register is selected by:
• RA (number) selects the register to put on busA (data)
• RB (number) selects the register to put on busB (data)
• RW (number) selects the register to be  written

via busW (data) when Write Enable is 1
• Clock input (CLK)

• The CLK input is a factor ONLY during write operation
• During read operation, behaves as a combinational

logic block:
- RA or RB valid => busA or busB valid after “access time.”

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RWRA RB

32 32-bit
Registers
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Step 3: Assemble DataPath meeting requirements

• Register Transfer Requirements
⇒  Datapath Assembly

• Instruction Fetch
• Read Operands and Execute Operation
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3a: Overview of the Instruction Fetch Unit
• The common RTL operations

• Fetch the Instruction: mem[PC]
• Update the program counter:

- Sequential Code: PC = PC + 4
- Branch and Jump:   PC = “something else”

32
Instruction WordAddress

Instruction
Memory

PCClk
Next Address

Logic
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3b: Add & Subtract
• R[rd] = R[rs] op R[rt] Ex.: addU rd,rs,rt

• Ra, Rb, and Rw come from instruction’s Rs, Rt,
and Rd fields

• ALUctr and RegWr: control logic after decoding
the instruction

32
Result

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32  32-bit
Registers

Rs RtRd

A
LU

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

• Already defined register file, ALU
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Peer Instruction

A. We should use the main ALU to
compute PC=PC+4

B. We’re going to be able to read 2
registers and write a 3rd in 1 cycle

C. Datapath is hard, Control is easy

   ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT
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How to Design a Processor: step-by-step
• 1. Analyze instruction set architecture (ISA)
=> datapath requirements

• meaning of each instruction is given by the
register transfers

• datapath must include storage element for ISA
registers

• datapath must support each register transfer
• 2. Select set of datapath components and
establish clocking methodology

• 3. Assemble datapath meeting requirements
• 4. Analyze implementation of each
instruction to determine setting of control
points that effects the register transfer.

•       5. Assemble the control logic (hard part!)


