
CS61C L25 Single Cycle CPU Datapath (1) Garcia © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 25 –
 Single Cycle CPU Datapath

Paid to write a Mac virus?! ⇒
 A Symantec employee claimed

 “Macs aren’t more secure, there are just fewer
virus writers!”. DVForge, believing that Macs
WERE more secure, initially offered $25K to

anyone ($50K if from Symantec) who could infect
a honeypot mac. They later retracted the offer.

www.dvforge.com/virus.shtml
CS61C L25 Single Cycle CPU Datapath (2) Garcia © UCB

Anatomy: 5 components of any Computer

Personal Computer

 Processor

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory

(where
programs,
data
live when
running)

Devices

Input

Output

Keyboard,
Mouse

Display,
Printer

Disk
(where
programs,
data
live when
not running)

This week
and next

CS61C L25 Single Cycle CPU Datapath (3) Garcia © UCB

Outline of Today’s Lecture

• Design a processor: step-by-step
• Requirements of the Instruction Set
• Hardware components that match the
instruction set requirements

CS61C L25 Single Cycle CPU Datapath (4) Garcia © UCB

How to Design a Processor: step-by-step
• 1. Analyze instruction set architecture (ISA)
=> datapath requirements

• meaning of each instruction is given by the
register transfers

• datapath must include storage element for ISA
registers

• datapath must support each register transfer
• 2. Select set of datapath components and
establish clocking methodology

• 3. Assemble datapath meeting requirements
• 4. Analyze implementation of each
instruction to determine setting of control
points that effects the register transfer.

• 5. Assemble the control logic

CS61C L25 Single Cycle CPU Datapath (5) Garcia © UCB

Review: The MIPS Instruction Formats
• All MIPS instructions are 32 bits long. 3 formats:

• R-type

• I-type

• J-type

• The different fields are:
• op: operation (“opcode”) of the instruction
• rs, rt, rd: the source and destination register specifiers
• shamt: shift amount
• funct: selects the variant of the operation in the “op” field
• address / immediate: address offset or immediate value
• target address: target address of jump instruction

op target address
02631

6 bits 26 bits

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt address/immediate
016212631

6 bits 16 bits5 bits5 bits

CS61C L25 Single Cycle CPU Datapath (6) Garcia © UCB

Step 1a: The MIPS-lite Subset for today
• ADDU and SUBU

•addu rd,rs,rt
•subu rd,rs,rt

• OR Immediate:
•ori rt,rs,imm16

• LOAD and
STORE Word
•lw rt,rs,imm16
•sw rt,rs,imm16

• BRANCH:
•beq rs,rt,imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

CS61C L25 Single Cycle CPU Datapath (7) Garcia © UCB

Register Transfer Language
• RTL gives the meaning of the instructions

• All start by fetching the instruction

{op , rs , rt , rd , shamt , funct} = MEM[PC]

{op , rs , rt , Imm16} = MEM[PC]

inst Register Transfers
ADDU R[rd] = R[rs] + R[rt]; PC = PC + 4
SUBU R[rd] = R[rs] – R[rt]; PC = PC + 4
ORI R[rt] = R[rs] | zero_ext(Imm16); PC = PC + 4
LOAD R[rt] = MEM[R[rs] + sign_ext(Imm16)];PC = PC + 4
STORE MEM[R[rs] + sign_ext(Imm16)] = R[rt];PC = PC + 4
BEQ if (R[rs] == R[rt]) then
 PC = PC + 4 + (sign_ext(Imm16) || 00)
 else PC = PC + 4

CS61C L25 Single Cycle CPU Datapath (8) Garcia © UCB

Step 1: Requirements of the Instruction Set
• Memory (MEM)

• instructions & data
• Registers (R: 32 x 32)

• read RS
• read RT
• Write RT or RD

• PC
• Extender (sign extend)
• Add and Sub register or extended
immediate

• Add 4 or extended immediate to PC

CS61C L25 Single Cycle CPU Datapath (9) Garcia © UCB

Step 2: Components of the Datapath

•Combinational Elements
•Storage Elements

• Clocking methodology

CS61C L25 Single Cycle CPU Datapath (10) Garcia © UCB

Combinational Logic Elements (Building Blocks)

•Adder

•MUX

•ALU

32

32

A

B
32 Sum

CarryOut

32

32

A

B
32 Result

OP

32A

B 32

Y32

Select

A
dder

M
U

X
A

LU

CarryIn

CS61C L25 Single Cycle CPU Datapath (11) Garcia © UCB

ALU Needs for MIPS-lite + Rest of MIPS
• Addition, subtraction, logical OR, ==:
ADDU R[rd] = R[rs] + R[rt]; ...

SUBU R[rd] = R[rs] – R[rt]; ...

ORI R[rt] = R[rs] |
zero_ext(Imm16)...

BEQ if (R[rs] == R[rt])...

• Test to see if output == 0 for any ALU
operation gives == test. How?

• P&H also adds AND,
Set Less Than (1 if A < B, 0 otherwise)

• ALU follows chap 5
CS61C L25 Single Cycle CPU Datapath (12) Garcia © UCB

Administrivia
• Final Exam location TBA (exam grp 5)
•Sat, 2005-05-14, 12:30–3:30pm
•ALL students are required to complete ALL
of the exam (even if you aced the midterm)
•Same format as the midterm

- 3 Hours
- Closed book, except for 2 study sheets + green
- Leave your backpacks, books at home

• Homework 6 out today, due in a week
(mon)

CS61C L25 Single Cycle CPU Datapath (13) Garcia © UCB

Storage Element: Idealized Memory

• Memory (idealized)
• One input bus: Data In
• One output bus: Data Out

• Memory word is selected by:
• Address selects the word to put on Data Out
• Write Enable = 1: address selects the memory

word to be written via the Data In bus
• Clock input (CLK)

• The CLK input is a factor ONLY during write
operation

• During read operation, behaves as a
combinational logic block:

- Address valid => Data Out valid after “access time.”

Clk

Data In

Write Enable

32 32
DataOut

Address

CS61C L25 Single Cycle CPU Datapath (14) Garcia © UCB

Clk

Data In

Write Enable

N N
Data Out

Storage Element: Register (Building Block)

• Similar to D Flip Flop except
- N-bit input and output
- Write Enable input

• Write Enable:
- negated (or deasserted) (0):

Data Out will not change
- asserted (1):

Data Out will become Data In

CS61C L25 Single Cycle CPU Datapath (15) Garcia © UCB

Storage Element: Register File
• Register File consists of 32 registers:

• Two 32-bit output busses:
 busA and busB
• One 32-bit input bus: busW

• Register is selected by:
• RA (number) selects the register to put on busA (data)
• RB (number) selects the register to put on busB (data)
• RW (number) selects the register to be written

via busW (data) when Write Enable is 1
• Clock input (CLK)

• The CLK input is a factor ONLY during write operation
• During read operation, behaves as a combinational

logic block:
- RA or RB valid => busA or busB valid after “access time.”

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RWRA RB

32 32-bit
Registers

CS61C L25 Single Cycle CPU Datapath (16) Garcia © UCB

Step 3: Assemble DataPath meeting requirements

• Register Transfer Requirements
⇒ Datapath Assembly

• Instruction Fetch
• Read Operands and Execute Operation

CS61C L25 Single Cycle CPU Datapath (17) Garcia © UCB

3a: Overview of the Instruction Fetch Unit
• The common RTL operations

• Fetch the Instruction: mem[PC]
• Update the program counter:

- Sequential Code: PC = PC + 4
- Branch and Jump: PC = “something else”

32
Instruction WordAddress

Instruction
Memory

PCClk
Next Address

Logic

CS61C L25 Single Cycle CPU Datapath (18) Garcia © UCB

3b: Add & Subtract
• R[rd] = R[rs] op R[rt] Ex.: addU rd,rs,rt

• Ra, Rb, and Rw come from instruction’s Rs, Rt,
and Rd fields

• ALUctr and RegWr: control logic after decoding
the instruction

32
Result

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs RtRd

A
LU

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

• Already defined register file, ALU

CS61C L25 Single Cycle CPU Datapath (19) Garcia © UCB

Peer Instruction

A. We should use the main ALU to
compute PC=PC+4

B. We’re going to be able to read 2
registers and write a 3rd in 1 cycle

C. Datapath is hard, Control is easy

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L25 Single Cycle CPU Datapath (20) Garcia © UCB

How to Design a Processor: step-by-step
• 1. Analyze instruction set architecture (ISA)
=> datapath requirements

• meaning of each instruction is given by the
register transfers

• datapath must include storage element for ISA
registers

• datapath must support each register transfer
• 2. Select set of datapath components and
establish clocking methodology

• 3. Assemble datapath meeting requirements
• 4. Analyze implementation of each
instruction to determine setting of control
points that effects the register transfer.

• 5. Assemble the control logic (hard part!)

