
CS61C L27 Single Cycle CPU Control II (1) Garcia © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 28 –
 Single Cycle CPU Control II

DARPA $s drying up…ouch! ⇒

www.nytimes.com/2005/04/02/technology/02darpa.html?

“I'm worried and depressed,”
– David Patterson, president of the ACM.

There is a significant shift of $ from “Blue
Sky” research to military contractors. This is

a significant shift, mostly for the worse.

CS61C L27 Single Cycle CPU Control II (2) Garcia © UCB

°5 steps to design a processor
• 1. Analyze instruction set => datapath requirements
• 2. Select set of datapath components & establish clock

methodology
• 3. Assemble datapath meeting the requirements
• 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.
• 5. Assemble the control logic

°Control is the hard part
°MIPS makes that easier
• Instructions same size
• Source registers always in same place
• Immediates same size, location
• Operations always on registers/immediates

Review: Single cycle datapath

Control

Datapath

Memory

Processor
Input

Output

CS61C L27 Single Cycle CPU Control II (3) Garcia © UCB

A Summary of the Control Signals (2/2)

add sub ori lw sw beq jump
RegDst
ALUSrc
MemtoReg
RegWrite
MemWrite
nPCsel
Jump
ExtOp
ALUctr<2:0>

1
0
0
1
0
0
0
x

Add

1
0
0
1
0
0
0
x

Subtract

0
1
0
1
0
0
0
0

Or

0
1
1
1
0
0
0
1

Add

x
1
x
0
1
0
0
1

Add

x
0
x
0
0
1
0
x

Subtract

x
x
x
0
0
0
1
x

 x

op target address

op rs rt rd shamt funct
061116212631

op rs rt immediate

R-type

I-type

J-type

add, sub

ori, lw, sw, beq

jump

func
op 00 0000 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010Appendix A

10 0000See 10 0010 We Don’t Care :-)

CS61C L27 Single Cycle CPU Control II (4) Garcia © UCB

32

ALUctr =

Clk

busW

RegWr =

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst =

Extender

M
ux

Mux

3216imm16

ALUSrc =

ExtOp =

M
ux

MemtoReg =

Clk

Data In
WrEn

32
Adr

Data
Memory

32

MemWr =
A

LU

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

0

1

0

1

01
<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

• New PC = { PC[31..28], target address, 00 }

nPC_sel=

The Single Cycle Datapath during Jump
op target address

02631
J-type jump

25

Jump=

<0:25>

TA26

CS61C L27 Single Cycle CPU Control II (5) Garcia © UCB

The Single Cycle Datapath during Jump

32

ALUctr =x

Clk

busW

RegWr = 0

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst = x

Extender

M
ux

Mux

3216imm16

ALUSrc = x

ExtOp = x

M
ux

MemtoReg = x

Clk

Data In
WrEn

32
Adr

Data
Memory

32

MemWr = 0
A

LU

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

0

1

0

1

01
<21:25>

<16:20>

<11:15>

<0:15>

RdRsRt

• New PC = { PC[31..28], target address, 00 }

nPC_sel=0
Jump=1

Imm16

<0:25>

TA26

op target address
02631

J-type jump
25

CS61C L27 Single Cycle CPU Control II (6) Garcia © UCB

Instruction Fetch Unit at the End of Jump

Adr

Inst
Memory

A
dder

A
dder

PC
Clk

00M
ux

4

nPC_sel

im
m

16

Instruction<31:0>

0

1

Zero

nPC_MUX_sel

• New PC = { PC[31..28], target address, 00 }
op target address

02631
J-type jump

25

How do we modify this
to account for jumps?

Jump

CS61C L27 Single Cycle CPU Control II (7) Garcia © UCB

Instruction Fetch Unit at the End of Jump

Adr

Inst
Memory

A
dder

A
dder

PC

Clk
00

M
ux

4

nPC_sel

im
m

16

Instruction<31:0>

0

1

Zero

nPC_MUX_sel

• New PC = { PC[31..28], target address, 00 }
op target address

02631
J-type jump

25

M
ux

1

0

Jump

TA
26

4 (MSBs)

00

Query
• Can Zero still
 get asserted?

• Does nPC_sel
 need to be 0?
• If not, what?

CS61C L27 Single Cycle CPU Control II (8) Garcia © UCB

Build CL to implement Jump on paper now

Jump

Inst31
Inst30
Inst29
Inst28
Inst27
Inst26
Inst25

Inst01
Inst00

CS61C L27 Single Cycle CPU Control II (9) Garcia © UCB

Build CL to implement Jump on paper now

Jump

Inst31
Inst30
Inst29
Inst28
Inst27
Inst26
Inst25

Inst01
Inst00

2-input
6-bit-wide
XNOR

A

B

6-input
AND

0
0
0
0
1
0

111
001
010
100

XNORBiAi

CS61C L27 Single Cycle CPU Control II (10) Garcia © UCB

Administrivia
• HW7 out today, due in a week

CS61C L27 Single Cycle CPU Control II (11) Garcia © UCB

Review: Finite State Machine (FSM)

• States
represent possible
output values.

• Transitions
represent changes
between states
based on inputs.

• Implement
with CL and
clocked register
feedback.

CS61C L27 Single Cycle CPU Control II (12) Garcia © UCB

Finite State Machines extremely useful!

• They define
•How output signals respond to input
signals and previous state.
•How we change states depending on
input signals and previous state

• The output signals could be our
familiar control signals
•Some control signals may only depend
on CL, not on state at all…

• We could implement very detailed
FSMs w/Programmable Logic Arrays

CS61C L27 Single Cycle CPU Control II (13) Garcia © UCB

Taking advantage of sum-of-products

• Since sum-of-products is a
convenient notation and way to think
about design, offer hardware building
blocks that match that notation

• One example is
Programmable Logic Arrays (PLAs)

• Designed so that can select (program)
ands, ors, complements after you get
the chip
• Late in design process, fix errors, figure
out what to do later, …

CS61C L27 Single Cycle CPU Control II (14) Garcia © UCB

• • •

inputs

AND
array

• • •

outputs

OR
arrayproduct

terms

Programmable Logic Arrays
• Pre-fabricated building block of many

AND/OR gates
• “Programmed” or “Personalized" by making or

breaking connections among gates
• Programmable array block diagram for sum of

products form

And Programming:
• How many inputs?
• How to combine inputs?
• How many product terms?

Or Programming:
• How to combine product terms?
• How many outputs?

CS61C L27 Single Cycle CPU Control II (15) Garcia © UCB

example:

F0 = A + B' C'
F1 = A C' + A B
F2 = B' C' + A B
F3 = B' C + A

personality matrix
1 = uncomplemented in term
0 = complemented in term
– = does not participate

1 = term connected to output
0 = no connection to output

input side: 3 inputs

output side: 4 outputs
Product inputs outputs
term A B C F0 F1 F2 F3

AB 1 1 – 0 1 1 0
B'C – 0 1 0 0 0 1
AC' 1 – 0 0 1 0 0
B'C' – 0 0 1 0 1 0
A 1 – – 1 0 0 1 reuse of terms;

5 product terms

Enabling Concept

• Shared product terms among outputs

CS61C L27 Single Cycle CPU Control II (16) Garcia © UCB

Before Programming

• All possible connections available before
“programming”

CS61C L27 Single Cycle CPU Control II (17) Garcia © UCB

A B C

F1 F2 F3F0

AB

B'C

AC'

B'C'

A

After Programming
• Unwanted connections are "blown"

• Fuse (normally connected, break unwanted
ones)
• Anti-fuse (normally disconnected, make wanted

connections)

CS61C L27 Single Cycle CPU Control II (18) Garcia © UCB

notation for implementing
F0 = A B + A' B'
F1 = C D' + C' D

AB+A'B'
CD'+C'D

AB

A'B'

CD'

C'D

A B C D

Alternate Representation

• Short-hand notation--don't have to draw all
the wires
• X Signifies a connection is present and

perpendicular signal is an input to gate

CS61C L27 Single Cycle CPU Control II (19) Garcia © UCB

Peer Instruction

A. MemToReg=‘x’ & ALUctr=‘sub’. SUB or BEQ?
B. ALUctr=‘add’. Which 1 signal is different for

all 3 of: ADD, LW, & SW? RegDst or ExtOp?
C. “Don’t Care” signals are useful because we

can simplify our PLA personality matrix. F / T?

 ABC
1: SRF
2: SRT
3: SEF
4: SET
5: BRF
6: BRT
7: BEF
8: BET

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

Extender

M
ux

Mux

3216imm16

ALUSrc

ExtOp

M
ux

MemtoReg

Clk

Data In
WrEn

32
Adr

Data
Memory

32

MemWr

A
LU

Instruction
Fetch Unit

Clk

Zero

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

nPC_sel

CS61C L27 Single Cycle CPU Control II (20) Garcia © UCB

°5 steps to design a processor
• 1. Analyze instruction set => datapath requirements
• 2. Select set of datapath components & establish clock

methodology
• 3. Assemble datapath meeting the requirements
• 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.
• 5. Assemble the control logic

°Control is the hard part
°MIPS makes that easier
• Instructions same size
• Source registers always in same place
• Immediates same size, location
• Operations always on registers/immediates

And in Conclusion… Single cycle control

Control

Datapath

Memory

Processor
Input

Output

