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CS61C : Machine Structures

 Lecture 28 –
 Single Cycle CPU Control II

DARPA $s drying up…ouch! ⇒

www.nytimes.com/2005/04/02/technology/02darpa.html?

“I'm worried and depressed,”
– David Patterson, president of the ACM.

There is a significant shift of $ from “Blue
Sky” research to military contractors. This is

a significant shift, mostly for the worse.
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°5 steps to design a processor
• 1. Analyze instruction set => datapath requirements
• 2. Select set of datapath components & establish clock

methodology
• 3. Assemble datapath meeting the requirements
• 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.
• 5. Assemble the control logic

°Control is the hard part
°MIPS makes that easier
• Instructions same size
• Source registers always in same place
• Immediates same size, location
•     Operations always on registers/immediates

Review: Single cycle datapath

Control

Datapath

Memory

Processor
Input

Output
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A Summary of the Control Signals (2/2)
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op target address

op rs rt rd shamt funct
061116212631

op rs rt immediate

R-type
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add, sub

ori, lw, sw, beq

jump

func
op 00 0000 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010Appendix A

10 0000See 10 0010 We Don’t Care :-)
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• New PC = { PC[31..28], target address, 00 }
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The Single Cycle Datapath during Jump
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The Single Cycle Datapath during Jump
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Instruction Fetch Unit at the End of  Jump
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• New PC = { PC[31..28], target address, 00 }
op target address

02631
J-type jump
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How do we modify this
to account for jumps?

Jump
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Instruction Fetch Unit at the End of  Jump
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00

Query
• Can Zero still
   get asserted?

• Does nPC_sel
  need to be 0?
• If not, what?
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Build CL to implement Jump on paper now

Jump
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Inst30
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Inst27
Inst26
Inst25

Inst01
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Build CL to implement Jump on paper now

Jump
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Inst27
Inst26
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Administrivia
• HW7 out today, due in a week
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Review: Finite State Machine (FSM)

• States
represent possible
output values.

• Transitions
represent changes
between states
based on inputs.

• Implement
with CL and
clocked register
feedback.
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Finite State Machines extremely useful!

• They define
•How output signals respond to input
signals and previous state.
•How we change states depending on
input signals and previous state

• The output signals could be our
familiar control signals
•Some control signals may only depend
on CL,  not on state at all…

• We could implement very detailed
FSMs w/Programmable Logic Arrays
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Taking advantage of sum-of-products

• Since sum-of-products is a
convenient notation and way to think
about design, offer hardware building
blocks that match that notation

• One example is
Programmable Logic Arrays (PLAs)

• Designed so that can select (program)
ands, ors, complements after you get
the chip
• Late in design process, fix errors, figure
out what to do later, …
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•   •   •

inputs

AND
array

•   •   •

outputs

OR
arrayproduct

terms

Programmable Logic Arrays
• Pre-fabricated building block of many

AND/OR gates
• “Programmed” or “Personalized" by making or

breaking connections among gates
• Programmable array block diagram for sum of

products form

And Programming:
• How many inputs?
• How to combine inputs?
• How many product terms?

Or Programming:
• How to combine product terms?
• How many outputs?
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example:

F0 = A     +  B' C'
F1 = A C'  +  A B
F2 = B' C' +  A B
F3 = B' C  +  A

personality matrix
1 = uncomplemented in term
0 = complemented in term
– = does not participate

1 = term connected to output
0 = no connection to output

input side: 3 inputs

output side: 4 outputs
Product inputs outputs
term A B C F0 F1 F2 F3

AB 1 1 – 0 1 1 0
B'C – 0 1 0 0 0 1
AC' 1 – 0 0 1 0 0
B'C' – 0 0 1 0 1 0
A 1 – – 1 0 0 1 reuse of terms; 

5 product terms

Enabling Concept

• Shared product terms among outputs
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Before Programming

• All possible connections available before
“programming”
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A B C

F1 F2 F3F0

AB

B'C

AC'

B'C'

A

After Programming
• Unwanted connections are "blown"

• Fuse (normally connected, break unwanted
ones)
• Anti-fuse (normally disconnected, make wanted

connections)
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notation for implementing
F0 = A B  +  A' B'
F1 = C D'  +  C' D

AB+A'B'
CD'+C'D

AB

A'B'

CD'

C'D

A B C D

Alternate Representation

• Short-hand notation--don't have to draw all
the wires
• X Signifies a connection is present and

perpendicular signal is an input to gate
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Peer Instruction

A. MemToReg=‘x’ & ALUctr=‘sub’. SUB or BEQ?
B. ALUctr=‘add’. Which 1 signal is different for

all 3 of: ADD, LW, & SW? RegDst or ExtOp?
C. “Don’t Care” signals are useful because we

can simplify our PLA personality matrix. F / T?

   ABC
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°5 steps to design a processor
• 1. Analyze instruction set => datapath requirements
• 2. Select set of datapath components & establish clock

methodology
• 3. Assemble datapath meeting the requirements
• 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.
• 5. Assemble the control logic

°Control is the hard part
°MIPS makes that easier
• Instructions same size
• Source registers always in same place
• Immediates same size, location
•     Operations always on registers/immediates

And in Conclusion… Single cycle control
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