CS61C : Machine Structures

Lecture 29 -
Introduction to Pipelined Execution

Lecturer PSOE Dan Garcia

www.cs .berkeley.edu/~ddgarcia

Bionic Eyes let blind see! =
Johns Hopkins researchers have
announced they have invented a “bionic eye”

with a computer chip on the back of the eye
and a small wireless video camera in a pair of
glasses. Face recognition? Not yet, but soon!

news .bbc.co.uk/1/hi/health/4411591 .stm

CS 61C L30 Introduction to Pipelined Execution (1) Garcia, Fall 2004 © UCB

Review: Single cycle datapath

°5 steps to design a processor
* 1. Analyze instruction set => datapath requirements

« 2. Select set of datapath components & establish clock
methodology

« 3. Assemble datapath meeting the requirements

* 4. Analyze implementation of each instruction to
determine setting of control points that effects the

register transfer. Processor
* 5. Assemble the control logic || . Input
*Control is the hard part L ||| Memory
>MIPS makes that easier || patapatn Output
* Instructions same size

« Source registers always in same place
 Immediates same size, location
+//Operations always on registers/immediates

CS 61C L30 Introduction to Pipelined Execution (2) Garcia, Fall 2004 © UCB

Review Datapath (1/3)

» Datapath is the hardware that
performs operations necessary to
execute programs.

e Control instructs datapath on what to
do next.

e Datapath needs:

- access to storage (general purpose
registers and memory)

- computational ability (ALU)
- helper hardware (local registers and PC)

Q CS 61C L30 Introduction to Pipelined Execution (3) Garcia, Fall 2004 © UCB

Review Datapath (2/3)

* Five stages of datapath (executing an
instruction):

1. Instruction Fetch (Increment PC)

2. Instruction Decode (Read Registers)
3. ALU (Computation)

4. Memory Access

5. Write to Registers

 ALL instructions must go through
ALL five stages.

Q CS 61C L30 Introduction to Pipelined Execution (4) Garcia, Fall 2004 © UCB

Review Datapath (3/3)

PC

—

instruction
memory

Imm

<

& _ > ¢
1. Instruction 2. Decode/

Fetch Register
Read

ﬂ CS 61C L30 Introduction to Pipelined Execution (5)

n
LI N
n
rs = -
— > ()] GEJ
P/
>
> & > & > —>
5. Write

3. Execute 4. Memory Back

Garcia, Fall 2004 © UCB

Gotta Do Laundry

° Ann, Brian, Cathy, Dave
each have one load of
clothes to wash, dry,
fold, and put away

°Washer takes 30 minutes

° Dryer takes 30 minutes
°“Folder” takes 30 minutes

°“Stasher” takes 30 minutes
to put clothes into drawers

@ CS 61C L30 Introduction to Pipelined Execution (6)

Garcia, Fall 2004 © UCB

Sequential Laundry

6 PM 7 8 9 10 11 12 1 2AM
>

%'E' 30'30'%'%' 30'30'%'%' 30'30'%'%'30'30'

T .
i 6 ° A meA
k| O S8 = .

= Ag o
cr)vzv) =
d
f * Sequential laundry takes

8 hours for 4 loads

w CS 61C L30 Introduction to Pipelined Execution (7) Garcia, Fall 2004 © UCB

Pipelined Laundry

6IPM 7 8 9 10 11 12 1 2AM
I >

r 303030 0303030 M
2| B @ AA
S| o =
(| © B A
B A
R0 A
d
e o Pigelined laundry takes
r 3.5 hours for 4 loads!

ﬂ CS 61C L30 Introduction to Pipelined Execution (8) Garcia, Fall 2004 © UCB

General Definitions

 Latency: time to completely execute a
certain task

- for example, time to read a sector from
disk is disk access time or disk latency

* Throughput: amount of work that can
be done over a period of time

Q CS 61C L30 Introduction to Pipelined Execution (9) Garcia, Fall 2004 © UCB

Pipelining Lessons (1/2)

. ritpelinin d_oe?n’tt hﬁlp
atency of single task,
° P.M ! 8 2 , it helps throughput of

T | o Tinlve entire workload
| I

ka0 SN operating _
k = simultaneously using

3 SN different resources
?VS = ,_ Potential speedup =
! D & Number pipe stages
e * Time to “fill” pipeline
, and time to “drain” it

reduces speedup:
2.3X v. 4X'in this

w CS 61C L30 Introduction to Pipelined Execution (10) Garcia, Fall 2004 © UCB

Pipelining Lessons (2/2)

e Suppose new
6PM 7 8 9 Washer takes 20
| —» minutes, new

T — | 'T° Stasher takes 20

a 3030 30 30 30 30 30 minuht?s. How

s = : much faster is

K g = A A pipeline?

0} & 0 SN * Pipeline rate

r = . limited by slowest
; O A pipeline stage

° « Unbalanced

lengths of pipe
stages also

@ reduces speedup
CS 61C L30 Introduction to Pipelined Execution (11) Garcia, Fall 2004 © UCB

Steps in Executing MIPS

1) IFetich: Fetch Instruction, Increment PC

2) Decode Instruction, Read Registers

3) Execute:
Mem-ref: Calculate Address
Arith-log: Perform Operation

4) Memory:
Load: Read Data from Memory
Store: Write Data to Memory

5) Write Back: Write Data to Register

w CS 61C L30 Introduction to Pipelined Execution (12) Garcia, Fall 2004 © UCB

Pipelined Execution Representation

Time

IFtch|Dcd [Exec|[Mem| WB
IFtch|Dcd [Exec[Mem] WB
IFtch|Dcd [Exec[Mem] WB
IFtch|Dcd [Exec[Mem] WB
IFtch|Dcd [Exec[Mem] WB
IFtch|Dcd [Exec[Mem] WB

* Every instruction must take same number
of steps, also called pipeline “stages™, so
some will go idle sometimes

w CS 61C L30 Introduction to Pipelined Execution (13) Garcia, Fall 2004 © UCB

Review: Datapath for MIPS

'

(7))
<[= o |rs 2 > =
SE Y o > ALU 8 O
s o |f = c £
Qe > >] GEJ
] Imm >'/
+
>
s _ > & > & > o P o
1. Instruction 2. Decode/ 3. Execute 4 I\/Iemory5' Write
Fetch Register Read Back

* Use datapath figure to represent pipeline

ﬂ CS 61C L30 Introduction to Pipelined Execution (14)

IFtch| Dcd |Exec|Mem| WB

I$

Reg |:

Reg

Garcia, Fall 2004 © UCB

Graphical Pipeline Representation

(In Reg, right half highlight read, left half write)
Time (clock cycles) g

s |

Load
Add

Y e,) D

Store

Sub
Or

w’cs 61C L30 Introduction to Pipelined Execution (15) Garcia, Fall 2004 © UCB

" Q=0

Example

* Suppose 2 ns for memory access, 2 ns
for ALU operation, and 1 ns for register
file read or write; compute instr rate

* Nonpipelined Execution:

*lw : IF + Read Reg + ALU + Memory + Write
Reg=2+1+2+2+1=8ns

- add: IF + Read Reg + ALU + Write Reg
=2+1+2+1=6ns
* Pipelined Execution:

- Max(IF,Read Reg,ALU,Memory,Write Reg)
=2Nns

Q CS 61C L30 Introduction to Pipelined Execution (16) Garcia, Fall 2004 © UCB

Pipeline Hazard: Matching socks in later load

6IPM 7 8 9 10 11 12 1 2AM
| >

3003030303030 Time
@ &
(& B A

C A
0| &7 ;
|3 ="
d = ¢
el = A
.

A depends on D; stall since folder tied up

ﬂ CS 61C L30 Introduction to Pipelined Execution (17) Garcia, Fall 2004 © UCB

Administrivia

 Any administration?

w CS 61C L30 Introduction to Pipelined Execution (18) Garcia, Fall 2004 © UCB

Problems for Computers

e Limits to pipelining: Hazards prevent
next instruction from executing during
its designated clock cycle

- Structural hazards: HW cannot support
this combination of instructions (single
person to fold and put clothes away)

- Control hazards: Pipelining of branches
& other instructions stall the pipeline
until the hazard; “bubbles” in the pipeline

- Data hazards: Instruction depends on
result of prior instruction still in the
pipeline (missing sock)

@ CS 61C L30 Introduction to Pipelined Execution (19) Garcia, Fall 2004 © UCB

Structural Hazard #1: Single Memory (1/2)

Time (clock cycles) >

s |

Load

§Reg§

Instr 1

Y e,) DS

Instr 2

Instr 3 Reg >>

YInstr 4 I$ IR

V,

D$ |i]lReg

%m

2 Read same memory twice in same clock cycle

N

(93

" Q=0

q

CS 61C L30 Introduction to Pipelined Execution (20) Garcia, Fall 2004 © UCB

Structural Hazard #1: Single Memory (2/2)

e Solution:

 infeasible and inefficient to create
second memory

- (We’ll learn about this more next week)

- s0 simulate this by having two Level 1
Caches (a temporary smaller [of usually
most recently used] copy of memory)

- have both an L1 Instruction Cache and
an L1 Data Cache

- need more complex hardware to control
when both caches miss

ﬂ CS 61C L30 Introduction to Pipelined Execution (21) Garcia, Fall 2004 © UCB

Structural Hazard #2: Registers (1/2)

I
n
S
t
r.

= 0O Q=0

G

SW

Instr 1

Instr 2

Instr 3

Yinstr 4

Time (clock cycles)

s |

Reg

an’t read and write to r:egis:ters:sim:ultaheously

CS 61C L30 Introduction to Pipelined Execution (22)

Garcia, Fall 2004 © UCB

Structural Hazard #2: Registers (2/2)

* Fact: Register access is VERY fast:
takes less than half the time of ALU
stage

e Solution: introduce convention

- always Write to Registers during first
half of each clock cycle

- always Read from Registers during
second half of each clock cycle

* Result: can perform Read and Write
during same clock cycle

@ CS 61C L30 Introduction to Pipelined Execution (23) Garcia, Fall 2004 © UCB

Peer Instruction

A. Thanks to pipelining, | have reduced the time it ABC

took me to wash my shirt. 1l: FFF

o _ _ 2: FFT

B. Longer pipelines are always a win (since less |3. p7F

work per stage & a faster clock). 4: FTT

: : : TFF

C. We can rely on compilers to help us avoid data 2, TET

hazards by reordering instrs. 7. o

Q(8: TTT
CS 61C L30 Introduction to Pipelined Execution (24) Garcia, Fall 2004 © UCB

Peer Instruction Answer
A. Throughput better, not execution time

B. “...longer pipelines do usually mean faster
clock, but branches cause problems!

C. “they happen too often & delay too long.”
Forwarding! (e.g, Mem = ALU¥

A. Thibks iiihni hE reduced the time it ABC
e ek < s G

2: FFT

B. LoffGer elilﬁaslm&a win (sinceless [3. prE
work p g% adabtefiglock). 4: FTT

. i 5: TFF

C. W n raly op co er help us avoid data | . oo
haZards/aii reprderiimy i S. 7. TTE

Q CS 61C L30 Introduction to Pipelined Execution (25) Garcia, Fall 2004 © UCB

Things to Remember

e Optimal Pipeline

- Each stage is executing part of an
instruction each clock cycle.

- One instruction finishes during each clock
cycle.

- On average, execute far more quickly.

« What makes this work?

- Similarities between instructions allow us
to use same stages for all instructions

(generally).

- Each stage takes about the same amount
@ of time as all others: little wasted time.

CS 61C L30 Introduction to Pipelined Execution (26) Garcia, Fall 2004 © UCB

