
CS61C L30 Pipelined Execution, part II (1) Garcia 2005 © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture 30 –
 Pipelined Execution, part II

www.technologyreview.com/articles/05/04/wo/wo_040605krotoski.asp

Games to learn?! ⇒
Recent studies show that

there may be a place for computer
games in traditional K-12 classrooms.

There is data that shows dropout rates
are lower, SATs, enjoyment, interest up!

CS61C L30 Pipelined Execution, part II (2) Garcia 2005 © UCB

Review: Pipeline (1/2)
•Optimal Pipeline
•Each stage is executing part of an
instruction each clock cycle.
•One inst. finishes during each clock cycle.
•On average, execute far more quickly.

•What makes this work?
•Similarities between instructions allow us
to use same stages for all instructions
(generally).
•Each stage takes about the same amount
of time as all others: little wasted time.

CS61C L30 Pipelined Execution, part II (3) Garcia 2005 © UCB

Review: Pipeline (2/2)

•Pipelining is a BIG IDEA
•widely used concept

•What makes it less than perfect?
•Structural hazards: suppose we had
only one cache?
⇒ Need more HW resources
•Control hazards: need to worry about
branch instructions?
 ⇒ Delayed branch
•Data hazards: an instruction depends
on a previous instruction?

CS61C L30 Pipelined Execution, part II (4) Garcia 2005 © UCB

Control Hazard: Branching (1/7)

Where do we do the compare for the branch?

 I$

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg

A
LU I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L30 Pipelined Execution, part II (5) Garcia 2005 © UCB

Control Hazard: Branching (2/7)
•We put branch decision-making
hardware in ALU stage
• therefore two more instructions after the
branch will always be fetched, whether
or not the branch is taken

•Desired functionality of a branch
• if we do not take the branch, don’t waste
any time and continue executing
normally
• if we take the branch, don’t execute any
instructions after the branch, just go to
the desired label

CS61C L30 Pipelined Execution, part II (6) Garcia 2005 © UCB

Control Hazard: Branching (3/7)

• Initial Solution: Stall until decision is
made
• insert “no-op” instructions: those that
accomplish nothing, just take time
•Drawback: branches take 3 clock cycles
each (assuming comparator is put in
ALU stage)

CS61C L30 Pipelined Execution, part II (7) Garcia 2005 © UCB

Control Hazard: Branching (4/7)
•Optimization #1:
•move asynchronous comparator up to
Stage 2
• as soon as instruction is decoded
(Opcode identifies is as a branch),
immediately make a decision and set the
value of the PC (if necessary)
•Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed
•Side Note: This means that branches are
idle in Stages 3, 4 and 5.

CS61C L30 Pipelined Execution, part II (8) Garcia 2005 © UCB

• Insert a single no-op (bubble)

Control Hazard: Branching (5/7)

add

beq

lw
A

LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg I$

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

• Impact: 2 clock cycles per branch
instruction ⇒ slow

CS61C L30 Pipelined Execution, part II (9) Garcia 2005 © UCB

Control Hazard: Branching (6/7)

•Optimization #2: Redefine branches
•Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident
•New definition: whether or not we take
the branch, the single instruction
immediately following the branch gets
executed (called the branch-delay slot)

•The term “Delayed Branch” means
we always execute inst after branch

CS61C L30 Pipelined Execution, part II (10) Garcia 2005 © UCB

Control Hazard: Branching (7/7)
•Notes on Branch-Delay Slot
•Worst-Case Scenario: can always put a
no-op in the branch-delay slot
•Better Case: can find an instruction
preceding the branch which can be
placed in the branch-delay slot without
affecting flow of the program
- re-ordering instructions is a common

method of speeding up programs
- compiler must be very smart in order to

find instructions to do this
- usually can find such an instruction at least

50% of the time
- Jumps also have a delay slot…

CS61C L30 Pipelined Execution, part II (11) Garcia 2005 © UCB

Example: Nondelayed vs. Delayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch
add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:

CS61C L30 Pipelined Execution, part II (12) Garcia 2005 © UCB

Data Hazards (1/2)

add $t0, $t1, $t2

sub $t4, $t0 ,$t3

and $t5, $t0 ,$t6

or $t7, $t0 ,$t8

xor $t9, $t0 ,$t10

•Consider the following sequence of
instructions

CS61C L30 Pipelined Execution, part II (13) Garcia 2005 © UCB

 Dependencies backwards in time are hazards
Data Hazards (2/2)

sub $t4,$t0,$t3

A
LUI$ Reg D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
LUReg D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L30 Pipelined Execution, part II (14) Garcia 2005 © UCB

• Forward result from one stage to another
Data Hazard Solution: Forwarding

sub $t4,$t0,$t3
A

LUI$ Reg D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
LUReg D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

 “or” hazard solved by register hardware

CS61C L30 Pipelined Execution, part II (15) Garcia 2005 © UCB

• Dependencies backwards in time are
hazards

Data Hazard: Loads (1/4)

sub $t3,$t0,$t2
A

LUI$ Reg D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

• Can’t solve with forwarding
• Must stall instruction dependent on
load, then forward (more hardware)

CS61C L30 Pipelined Execution, part II (16) Garcia 2005 © UCB

• Hardware must stall pipeline
• Called “interlock”

Data Hazard: Loads (2/4)

sub $t3,$t0,$t2

A
LUI$ Reg D$ Regbub

ble

and $t5,$t0,$t4

A
LUI$ Reg D$ Regbub

ble

or $t7,$t0,$t6 I$

A
LUReg D$bub

ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

CS61C L30 Pipelined Execution, part II (17) Garcia 2005 © UCB

Data Hazard: Loads (3/4)

• Instruction slot after a load is called
“load delay slot”
• If that instruction uses the result of the
load, then the hardware interlock will
stall it for one cycle.
• If the compiler puts an unrelated
instruction in that slot, then no stall
•Letting the hardware stall the
instruction in the delay slot is
equivalent to putting a nop in the slot
(except the latter uses more code space)

CS61C L30 Pipelined Execution, part II (18) Garcia 2005 © UCB

Data Hazard: Loads (4/4)
•Stall is equivalent to nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or $t7,$t0,$t6 I$

A
LUReg D$

lw $t0, 0($t1) A
LUI$ Reg D$ Reg

bub
ble

bub
ble

bub
ble

bub
ble

bub
ble

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

nop

CS61C L30 Pipelined Execution, part II (19) Garcia 2005 © UCB

 Historical Trivia

•First MIPS design did not interlock and
stall on load-use data hazard
•Real reason for name behind MIPS:
Microprocessor without
Interlocked
Pipeline
Stages
•Word Play on acronym for
Millions of Instructions Per Second,
also called MIPS

CS61C L30 Pipelined Execution, part II (21) Garcia 2005 © UCB

Review Pipeline Hazard: Stall is dependency

A depends on D; stall since folder tied up

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B
C
D

A

E

F

bubble
303030 3030 30 30

CS61C L30 Pipelined Execution, part II (22) Garcia 2005 © UCB

Out-of-Order Laundry: Don’t Wait

A depends on D; rest continue; need
more resources to allow out-of-order

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B
C
D

A
303030 3030 30 30

E

F

bubble

CS61C L30 Pipelined Execution, part II (23) Garcia 2005 © UCB

Superscalar Laundry: Parallel per stage

More resources, HW to match mix of
parallel tasks?

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B
C
D

A

E

F

 (light clothing)
 (dark clothing)
 (very dirty clothing)

 (light clothing)
 (dark clothing)
 (very dirty clothing)

303030 3030

CS61C L30 Pipelined Execution, part II (24) Garcia 2005 © UCB

Superscalar Laundry: Mismatch Mix

Task mix underutilizes extra resources

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30
 (light clothing)

 (light clothing)
 (dark clothing)

 (light clothing)

A

B

D

C

CS61C L30 Pipelined Execution, part II (27) Garcia 2005 © UCB

“And in Conclusion..”
•Pipeline challenge is hazards
• Forwarding helps w/many data hazards
•Delayed branch helps with control hazard in
5 stage pipeline

•More aggressive performance:
•Superscalar
•Out-of-order execution

