
CS61C L33 Caches III (1) Garcia © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture 33
 Caches III

There will be some really cool
exhibits you should take the time to see!

Concrete canoes, robot races, free
massages, and presentations by Dan’s
UCBUGG and GamesCrafters groups.

www.berkeley.edu/calday/

Attend Cal Day tomorrow ⇒

CS61C L33 Caches III (2) Garcia © UCB

Review…
•Mechanism for transparent movement of
data among levels of a storage hierarchy

• set of address/value bindings
• address => index to set of candidates
• compare desired address with tag
• service hit or miss

- load new block and binding on miss

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
...

1 0 a b c d

000000000000000000 0000000001 1100
address: tag index offset

CS61C L33 Caches III (3) Garcia © UCB

Big-endian and little-endian derive from Jonathan Swift's Gulliver's Travels in
which the Big Endians were a political faction that broke their eggs at the large
end ("the primitive way") and rebelled against the Lilliputian King who required

his subjects (the Little Endians) to break their eggs at the small end.

Big Endian vs. Little Endian

Big Endian
• ADDR3 ADDR2 ADDR1 ADDR0

 BYTE0 BYTE1 BYTE2 BYTE3
00000001 00000100 00000000 00000000

• ADDR0 ADDR1 ADDR2 ADDR3
 BYTE3 BYTE2 BYTE1 BYTE0
00000000 00000000 00000100 00000001

Little Endian
• ADDR3 ADDR2 ADDR1 ADDR0

 BYTE3 BYTE2 BYTE1 BYTE0
00000000 00000000 00000100 00000001

• ADDR0 ADDR1 ADDR2 ADDR3
 BYTE0 BYTE1 BYTE2 BYTE3
00000001 00000100 00000000 00000000

Consider the number 1025 as we normally write it:
BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001

www.webopedia.com/TERM/b/big_endian.html
searchnetworking.techtarget.com/sDefinition/0,,sid7_gci211659,00.html

www.noveltheory.com/TechPapers/endian.asp
en.wikipedia.org/wiki/Big_endian

• The order in which BYTES are stored in memory
• Bits always stored as usual. (E.g., 0xC2=0b 1100 0010)

CS61C L33 Caches III (4) Garcia © UCB

•Blah blah Cache size 16KB blah blah
223 blocks blah blah how many bits?
•Answer! 2XY means…

X=0 ⇒ no suffix
X=1 ⇒ kibi ~ Kilo 103

X=2 ⇒ mebi ~ Mega 106

X=3 ⇒ gibi ~ Giga 109

X=4 ⇒ tebi ~ Tera 1012

X=5 ⇒ pebi ~ Peta 1015

X=6 ⇒ exbi ~ Exa 1018

X=7 ⇒ zebi ~ Zetta 1021

X=8 ⇒ yobi ~ Yotta 1024

Memorized this table yet?

Y=0 ⇒ 1
Y=1 ⇒ 2
Y=2 ⇒ 4
Y=3 ⇒ 8
Y=4 ⇒ 16
Y=5 ⇒ 32
Y=6 ⇒ 64
Y=7 ⇒ 128
Y=8 ⇒ 256
Y=9 ⇒ 512

*

CS61C L33 Caches III (5) Garcia © UCB

How Much Information IS that?

• Print, film, magnetic, and optical storage media
produced about 5 exabytes of new information in
2002. 92% of the new information stored on
magnetic media, mostly in hard disks.

• Amt of new information stored on paper, film,
magnetic, & optical media ~doubled in last 3 yrs

• Information flows through electronic channels --
telephone, radio, TV, and the Internet -- contained
~18 exabytes of new information in 2002, 3.5x more
than is recorded in storage media. 98% of this total
is the information sent & received in telephone
calls - incl. voice & data on fixed lines & wireless.

• WWW ⇒ 170 Tb of information on its surface; in volume
17x the size of the Lib. of Congress print collections.

• Instant messaging ⇒ 5x109 msgs/day (750GB), 274 TB/yr.
• Email ⇒ ~400 PB of new information/year worldwide.

www.sims.berkeley.edu/research/projects/how-much-info-2003/

CS61C L33 Caches III (6) Garcia © UCB

Block Size Tradeoff (1/3)
•Benefits of Larger Block Size

• Spatial Locality: if we access a given
word, we’re likely to access other
nearby words soon

• Very applicable with Stored-Program
Concept: if we execute a given
instruction, it’s likely that we’ll execute
the next few as well

• Works nicely in sequential array
accesses too

CS61C L33 Caches III (7) Garcia © UCB

Block Size Tradeoff (2/3)
• Drawbacks of Larger Block Size

• Larger block size means larger miss penalty
- on a miss, takes longer time to load a new block

from next level
• If block size is too big relative to cache size,

then there are too few blocks
- Result: miss rate goes up

• In general, minimize
Average Memory Access Time (AMAT)

= Hit Time
+ Miss Penalty x Miss Rate

CS61C L33 Caches III (8) Garcia © UCB

Block Size Tradeoff (3/3)

•Hit Time = time to find and retrieve
data from current level cache
•Miss Penalty = average time to
retrieve data on a current level miss
(includes the possibility of misses on
successive levels of memory
hierarchy)
•Hit Rate = % of requests that are
found in current level cache
•Miss Rate = 1 - Hit Rate

CS61C L33 Caches III (9) Garcia © UCB

Extreme Example: One Big Block

•Cache Size = 4 bytes Block Size = 4 bytes
• Only ONE entry in the cache!

• If item accessed, likely accessed again soon
• But unlikely will be accessed again immediately!

•The next access will likely to be a miss again
• Continually loading data into the cache but
discard data (force out) before use it again

• Nightmare for cache designer: Ping Pong Effect

 Cache DataValid Bit
B 0B 1B 3

Tag
B 2

CS61C L33 Caches III (10) Garcia © UCB

Block Size Tradeoff Conclusions
Miss
Penalty

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access

Time

Block Size

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Miss
Rate

Block Size

CS61C L33 Caches III (11) Garcia © UCB

Administrivia

•Any administrivia?

CS61C L33 Caches III (12) Garcia © UCB

Types of Cache Misses (1/2)

• “Three Cs” Model of Misses
•1st C: Compulsory Misses

• occur when a program is first started
• cache does not contain any of that
program’s data yet, so misses are bound
to occur

• can’t be avoided easily, so won’t focus
on these in this course

CS61C L33 Caches III (13) Garcia © UCB

Types of Cache Misses (2/2)

• 2nd C: Conflict Misses
• miss that occurs because two distinct memory

addresses map to the same cache location
• two blocks (which happen to map to the same

location) can keep overwriting each other
• big problem in direct-mapped caches
• how do we lessen the effect of these?

• Dealing with Conflict Misses
• Solution 1: Make the cache size bigger

- Fails at some point
• Solution 2: Multiple distinct blocks can fit in the

same cache Index?

CS61C L33 Caches III (14) Garcia © UCB

Fully Associative Cache (1/3)

•Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: non-existant

•What does this mean?
• no “rows”: any block can go anywhere in
the cache

• must compare with all tags in entire cache
to see if data is there

CS61C L33 Caches III (15) Garcia © UCB

Fully Associative Cache (2/3)
•Fully Associative Cache (e.g., 32 B block)

• compare tags in parallel

Byte Offset

:

 Cache Data
B 0

0431

:

Cache Tag (27 bits long)

Valid

:

B 1B 31 :

 Cache Tag
=
=

=
=
=
:

CS61C L33 Caches III (16) Garcia © UCB

Fully Associative Cache (3/3)

•Benefit of Fully Assoc Cache
• No Conflict Misses (since data can go
anywhere)

•Drawbacks of Fully Assoc Cache
• Need hardware comparator for every
single entry: if we have a 64KB of data in
cache with 4B entries, we need 16K
comparators: infeasible

CS61C L33 Caches III (17) Garcia © UCB

Third Type of Cache Miss

•Capacity Misses
• miss that occurs because the cache has
a limited size

• miss that would not occur if we increase
the size of the cache

• sketchy definition, so just get the
general idea

•This is the primary type of miss for
Fully Associative caches.

CS61C L33 Caches III (18) Garcia © UCB

N-Way Set Associative Cache (1/4)

•Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: points us to the correct “row”
(called a set in this case)

•So what’s the difference?
• each set contains multiple blocks
• once we’ve found correct set, must
compare with all tags in that set to find
our data

CS61C L33 Caches III (19) Garcia © UCB

N-Way Set Associative Cache (2/4)

•Summary:
• cache is direct-mapped w/respect to sets
• each set is fully associative
• basically N direct-mapped caches
working in parallel: each has its own
valid bit and data

CS61C L33 Caches III (20) Garcia © UCB

N-Way Set Associative Cache (3/4)

•Given memory address:
• Find correct set using Index value.
• Compare Tag with all Tag values in the
determined set.

• If a match occurs, hit!, otherwise a miss.
• Finally, use the offset field as usual to
find the desired data within the block.

CS61C L33 Caches III (21) Garcia © UCB

N-Way Set Associative Cache (4/4)

•What’s so great about this?
• even a 2-way set assoc cache avoids a
lot of conflict misses

• hardware cost isn’t that bad: only need
N comparators

• In fact, for a cache with M blocks,
• it’s Direct-Mapped if it’s 1-way set assoc
• it’s Fully Assoc if it’s M-way set assoc
• so these two are just special cases of
the more general set associative design

CS61C L33 Caches III (22) Garcia © UCB

Associative Cache Example

• Recall this is how a
simple direct mapped
cache looked.
• This is also a 1-way set-

associative cache!

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

CS61C L33 Caches III (23) Garcia © UCB

Associative Cache Example

• Here’s a simple 2 way set
associative cache.

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache
Index

0
0
1
1

CS61C L33 Caches III (24) Garcia © UCB

Peer Instructions

1. In the last 10 years, the gap between the
access time of DRAMs & the cycle time of
processors has decreased. (I.e., is closing)

2. A 2-way set-associative cache can be
outperformed by a direct-mapped cache.

3. Larger block size ⇒ lower miss rate

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L33 Caches III (25) Garcia © UCB

Peer Instructions Answer

1. In the last 10 years, the gap between the
access time of DRAMs & the cycle time of
processors has decreased. (I.e., is closing)

2. A 2-way set-associative cache can be
outperformed by a direct-mapped cache.

3. Larger block size ⇒ lower miss rate

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

1. That was was one of the motivation for caches in the
first place -- that the memory gap is big and widening.

2. Sure, consider the caches from the previous slides
with the following workload: 0, 2, 0, 4, 2
2-way: 0m, 2m, 0h, 4m, 2m; DM: 0m, 2m, 0h, 4m, 2h

3. Larger block size ⇒ lower miss rate, true until a
certain point, and then the ping-pong effect takes over

CS61C L33 Caches III (26) Garcia © UCB

Cache Things to Remember
• Caches are NOT mandatory:

• Processor performs arithmetic
• Memory stores data
• Caches simply make data transfers go faster

• Each level of Memory Hiererarchy
subset of next higher level
• Caches speed up due to temporal locality:

store data used recently
• Block size > 1 wd spatial locality speedup:

Store words next to the ones used recently
• Cache design choices:

• size of cache: speed v. capacity
• N-way set assoc: choice of N (direct-mapped,

fully-associative just special cases for N)

