
CS61C L34 Caches IV (1) Garcia © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture 34
 Caches IV

Microsoft and U Maryland are
investigating the use of a one-hand (thumb-

driven) interface for controlling PDAs and
cell phones (normally one needs 2 hands,

one to hold the device, one for a stylus).
brighthand.com/article/Microsoft_is_All_Thumbs

Thumb-based interfaces? ⇒

CS61C L34 Caches IV (2) Garcia © UCB

Review: Why We Use Caches
µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU

1
9
8
2

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rfo

rm
an

ce “Moore’s Law”

• 1989 first Intel CPU with cache on chip
• 1998 Pentium III has two levels of cache on chip

CS61C L34 Caches IV (3) Garcia © UCB

N-Way Set Associative Cache (1/4)

•Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: points us to the correct “row”
(called a set in this case)

•So what’s the difference?
• each set contains multiple blocks
• once we’ve found correct set, must
compare with all tags in that set to find
our data

CS61C L34 Caches IV (4) Garcia © UCB

N-Way Set Associative Cache (2/4)

•Summary:
• cache is direct-mapped w/respect to sets
• each set is fully associative
• basically N direct-mapped caches
working in parallel: each has its own
valid bit and data

CS61C L34 Caches IV (5) Garcia © UCB

N-Way Set Associative Cache (3/4)

•Given memory address:
• Find correct set using Index value.
• Compare Tag with all Tag values in the
determined set.

• If a match occurs, hit!, otherwise a miss.
• Finally, use the offset field as usual to
find the desired data within the block.

CS61C L34 Caches IV (6) Garcia © UCB

N-Way Set Associative Cache (4/4)

•What’s so great about this?
• even a 2-way set assoc cache avoids a
lot of conflict misses

• hardware cost isn’t that bad: only need
N comparators

• In fact, for a cache with M blocks,
• it’s Direct-Mapped if it’s 1-way set assoc
• it’s Fully Assoc if it’s M-way set assoc
• so these two are just special cases of
the more general set associative design

CS61C L34 Caches IV (9) Garcia © UCB

Block Replacement Policy (1/2)

•Direct-Mapped Cache: index
completely specifies position which
position a block can go in on a miss
•N-Way Set Assoc: index specifies a
set, but block can occupy any position
within the set on a miss
•Fully Associative: block can be written
into any position
•Question: if we have the choice, where
should we write an incoming block?

CS61C L34 Caches IV (10) Garcia © UCB

Block Replacement Policy (2/2)

• If there are any locations with valid bit
off (empty), then usually write the new
block into the first one.
• If all possible locations already have a
valid block, we must pick a
replacement policy: rule by which we
determine which block gets “cached
out” on a miss.

CS61C L34 Caches IV (11) Garcia © UCB

Block Replacement Policy: LRU

•LRU (Least Recently Used)
• Idea: cache out block which has been
accessed (read or write) least recently

• Pro: temporal locality ⇒ recent past use
implies likely future use: in fact, this is a
very effective policy

• Con: with 2-way set assoc, easy to keep
track (one LRU bit); with 4-way or
greater, requires complicated hardware
and much time to keep track of this

CS61C L34 Caches IV (12) Garcia © UCB

Block Replacement Example
•We have a 2-way set associative
cache with a four word total capacity
and one word blocks. We perform the
following word accesses (ignore
bytes for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4
How many hits and how many misses
will there be for the LRU block
replacement policy?

CS61C L34 Caches IV (13) Garcia © UCB

Block Replacement Example: LRU
•Addresses 0, 2, 0, 1, 4, 0, ... 0 lru

2

1 lru

loc 0 loc 1
set 0
set 1

0 2lruset 0
set 1

 0: miss, bring into set 0 (loc 0)

 2: miss, bring into set 0 (loc 1)

 0: hit

 1: miss, bring into set 1 (loc 0)

 4: miss, bring into set 0 (loc 1, replace 2)

 0: hit

0set 0
set 1

lrulru

0 2set 0
set 1

lru lru

set 0
set 1

0
1 lru

lru24lru

set 0
set 1

0 4
1 lru

lru lru

CS61C L34 Caches IV (14) Garcia © UCB

Big Idea
•How to choose between associativity,
block size, replacement policy?

•Design against a performance model
• Minimize: Average Memory Access Time
 = Hit Time
 + Miss Penalty x Miss Rate

• influenced by technology & program
behavior

• Note: Hit Time encompasses Hit Rate!!!

•Create the illusion of a memory that is
large, cheap, and fast - on average

CS61C L34 Caches IV (15) Garcia © UCB

Example

•Assume
• Hit Time = 1 cycle
• Miss rate = 5%
• Miss penalty = 20 cycles
• Calculate AMAT…

•Avg mem access time
= 1 + 0.05 x 20
= 1 + 1 cycles
= 2 cycles

CS61C L34 Caches IV (17) Garcia © UCB

Ways to reduce miss rate

•Larger cache
• limited by cost and technology
• hit time of first level cache < cycle time

•More places in the cache to put each
block of memory – associativity

• fully-associative
- any block any line

• N-way set associated
- N places for each block
- direct map: N=1

CS61C L34 Caches IV (18) Garcia © UCB

Improving Miss Penalty
•When caches first became popular,
Miss Penalty ~ 10 processor clock
cycles
•Today 2400 MHz Processor (0.4 ns per
clock cycle) and 80 ns to go to DRAM
⇒ 200 processor clock cycles!

Proc $2

DRAM$

MEM

Solution: another cache between memory and
the processor cache: Second Level (L2) Cache

CS61C L34 Caches IV (19) Garcia © UCB

Analyzing Multi-level cache hierarchy

Proc $2

DRAM$

L1 hit
time

L1 Miss Rate
L1 Miss PenaltyAvg Mem Access Time =

L1 Hit Time + L1 Miss Rate * L1 Miss Penalty
L1 Miss Penalty =

L2 Hit Time + L2 Miss Rate * L2 Miss Penalty
Avg Mem Access Time =

L1 Hit Time + L1 Miss Rate *
(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

L2 hit
time L2 Miss Rate

L2 Miss Penalty

CS61C L34 Caches IV (20) Garcia © UCB

Typical Scale

•L1
• size: tens of KB
• hit time: complete in one clock cycle
• miss rates: 1-5%

•L2:
• size: hundreds of KB
• hit time: few clock cycles
• miss rates: 10-20%

•L2 miss rate is fraction of L1 misses
that also miss in L2

• why so high?
CS61C L34 Caches IV (21) Garcia © UCB

Example: with L2 cache

•Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L2 Hit Time = 5 cycles
• L2 Miss rate = 15% (% L1 misses that miss)
• L2 Miss Penalty = 200 cycles

•L1 miss penalty = 5 + 0.15 * 200 = 35
•Avg mem access time = 1 + 0.05 x 35

= 2.75 cycles

CS61C L34 Caches IV (22) Garcia © UCB

Example: without L2 cache

•Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L1 Miss Penalty = 200 cycles

•Avg mem access time = 1 + 0.05 x 200
= 11 cycles

•4x faster with L2 cache! (2.75 vs. 11)

CS61C L34 Caches IV (23) Garcia © UCB

What to do on a write hit?

•Write-through
• update the word in cache block and
corresponding word in memory

•Write-back
• update word in cache block
• allow memory word to be “stale”
⇒ add ‘dirty’ bit to each block indicating
that memory needs to be updated when
block is replaced
⇒ OS flushes cache before I/O…

•Performance trade-offs?

CS61C L34 Caches IV (24) Garcia © UCB

Generalized Caching

•We’ve discussed memory caching in
detail. Caching in general shows up
over and over in computer systems

• Filesystem cache
• Web page cache
• Game Theory databases / tablebases
• Software memoization
• Others?

•Big idea: if something is expensive
but we want to do it repeatedly, do it
once and cache the result.

CS61C L34 Caches IV (25) Garcia © UCB

An actual CPU -- Early PowerPC
• Cache

• 32 KiByte Instructions
and 32 KiByte Data L1
caches

• External L2 Cache
interface with integrated
controller and cache
tags, supports up to 1
MiByte external L2 cache

• Dual Memory
Management Units
(MMU) with Translation
Lookaside Buffers (TLB)

• Pipelining
• Superscalar (3

inst/cycle)
• 6 execution units (2

integer and 1 double
precision IEEE floating
point)

CS61C L34 Caches IV (26) Garcia © UCB

Peer Instructions

1. In the last 10 years, the gap between the access
time of DRAMs & the cycle time of processors has
decreased. (I.e., is closing)

2. A 2-way set-associative cache can be outperformed
by a direct-mapped cache.

3. Larger block size ⇒ lower miss rate

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L34 Caches IV (28) Garcia © UCB

And in Conclusion…
•Cache design choices:

• size of cache: speed v. capacity
• direct-mapped v. associative
• for N-way set assoc: choice of N
• block replacement policy
• 2nd level cache?
• 3rd level cache?
• Write through v. write back?

•Use performance model to pick
between choices, depending on
programs, technology, budget, ...

