
CS61C L36 VM II (1) Garcia © UCB

Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture 36
 VM II

MIT & UCB national news ⇒
Three MIT played a game of

“Academic Mad-libs” to generate a fictitious
paper, & it was accepted! Our Bio1A prof used

scare tactics to get laptop back, threatening
FBI/US Marshals, & national news gets involved!

www.cnn.com/2005/EDUCATION/04/21/academic.hoax.ap
abcnews.go.com/Technology/print?id=692448

CS61C L36 VM II (2) Garcia © UCB

Peer Instruction Example
°A direct-mapped $ will never out-perform a 2-

way set-associative $ of the same size.
• I said “TRUE … increased associativity!”
• Right Answer “FALSE … consider the following”

- We have 4 byte cache, block size = 1 byte. Compare a
2-way set-associative cache (2 sets using LRU
replacement) with a direct mapped cache (four rows).

direct
mapped

2-way
set

asso-
ciative

Empty

Empty
LRU=0,2

0
1
2
3
4

0 2 0 4 2

Miss
Load 0

Miss
Load 2

Hit! Miss
Load 4

Hit

Miss, Load 0,
LRU=1,2

Miss, Load 2
LRU=0,2

Hit!
LRU=1,2

Miss, Load 4
LRU=0,2

Miss, Load 2
LRU=1,2

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

time

CS61C L36 VM II (3) Garcia © UCB

Typical TLB Format
Virtual Physical Dirty Ref Valid Access

Address Address Rights

• TLB just a cache on the page table mappings

• TLB access time comparable to cache
 (much less than main memory access time)
• Dirty: since use write back, need to know
whether or not to write page to disk when replaced
•Ref: Used to help calculate LRU on replacement

• Cleared by OS periodically, then checked to
see if page was referenced

CS61C L36 VM II (4) Garcia © UCB

What if not in TLB?

°Option 1: Hardware checks page table
and loads new Page Table Entry into
TLB
°Option 2: Hardware traps to OS, up to
OS to decide what to do
•MIPS follows Option 2: Hardware knows
nothing about page table

CS61C L36 VM II (5) Garcia © UCB

What if the data is on disk?

°We load the page off the disk into a
free block of memory, using a DMA
(Direct Memory Access – very fast!)
transfer
•Meantime we switch to some other
process waiting to be run

°When the DMA is complete, we get an
interrupt and update the process's
page table
•So when we switch back to the task, the
desired data will be in memory

CS61C L36 VM II (6) Garcia © UCB

What if we don’t have enough memory?

°We chose some other page belonging
to a program and transfer it onto the
disk if it is dirty
• If clean (disk copy is up-to-date),
just overwrite that data in memory
•We chose the page to evict based on
replacement policy (e.g., LRU)

°And update that program's page table
to reflect the fact that its memory
moved somewhere else
° If continuously swap between disk
and memory, called Thrashing

CS61C L36 VM II (7) Garcia © UCB

Peer Instruction

1. Increasing at least one of
{associativity, block size} always a win

2. Higher DRAM bandwidth translates to
a lower miss rate

3. DRAM access time improves roughly
as fast as density

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L36 VM II (8) Garcia © UCB

Peer Instruction Answers
1. Increasing at least one of {associativity,

block size} is always a win
2. Higher DRAM bandwidth translates to a

lower miss rate
3. DRAM access time improves roughly as

fast as density

F A L S E
F A L S E

1. Assoc. may increase
access time, block may
increase miss penalty

2. No, a lower miss penalty
3. No, access = 9%/year, but

density = 2x every 2 yrs!

F A L S E ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L36 VM II (9) Garcia © UCB

Address Translation & 3 Concept tests

PPN Offset
Physical Address

VPN Offset
Virtual Address

INDEX

TLB

Physical
Page
Number
P. P. N.

P. P. N.
...

V. P. N.
Virtual
Page
Number
V. P. N.

TAG OffsetINDEX
Data Cache

Tag Data
Tag Data

CS61C L36 VM II (10) Garcia © UCB

Peer Instruction (1/3)
°40-bit virtual address, 16 KB page

°36-bit physical address

°Number of bits in Virtual Page Number/ Page
offset, Physical Page Number/Page offset?

Page Offset (? bits)Virtual Page Number (? bits)

Page Offset (? bits)Physical Page Number (? bits)

1: 22/18 (VPN/PO), 22/14 (PPN/PO)
2: 24/16, 20/16
3: 26/14, 22/14
4: 26/14, 26/10
5: 28/12, 24/12

CS61C L36 VM II (11) Garcia © UCB

Peer Instruction (1/3) Answer
°40- bit virtual address, 16 KB (214 B)

°36- bit virtual address, 16 KB (214 B)

°Number of bits in Virtual Page Number/ Page
offset, Physical Page Number/Page offset?

Page Offset (14 bits)Virtual Page Number (26 bits)

Page Offset (14 bits)Physical Page Number (22 bits)

1: 22/18 (VPN/PO), 22/14 (PPN/PO)
2: 24/16, 20/16
3: 26/14, 22/14
4: 26/14, 26/10
5: 28/12, 24/12

CS61C L36 VM II (12) Garcia © UCB

Peer Instruction (2/3): 40b VA, 36b PA
°2-way set-assoc. TLB, 256 “slots”, 40b VA:

°TLB Entry: Valid bit, Dirty bit,
Access Control (say 2 bits),
Virtual Page Number, Physical Page Number

°Number of bits in TLB Tag / Index / Entry?

Page Offset (14 bits)TLB Index (? bits)TLB Tag (? bits)

V D TLB Tag (? bits)Access (2 bits) Physical Page No. (? bits)

1: 12 / 14 / 38 (TLB Tag / Index / Entry)
2: 14 / 12 / 40
3: 18 / 8 / 44
4: 18 / 8 / 58

CS61C L36 VM II (13) Garcia © UCB

Peer Instruction (2/3) Answer
°2-way set-assoc data cache, 256 (28) “slots”,
2 TLB entries per slot => 8 bit index

°TLB Entry: Valid bit, Dirty bit,
Access Control (2 bits),
Virtual Page Number, Physical Page Number

Page Offset (14 bits)

Virtual Page Number (26 bits)

TLB Index (8 bits)TLB Tag (18 bits)

V D TLB Tag (18 bits)Access (2 bits) Physical Page No. (22 bits)

1: 12 / 14 / 38 (TLB Tag / Index / Entry)
2: 14 / 12 / 40
3: 18 / 8 / 44
4: 18 / 8 / 58

CS61C L36 VM II (14) Garcia © UCB

Peer Instruction (3/3)
°2-way set-assoc, 64KB data cache, 64B block

°Data Cache Entry: Valid bit, Dirty bit, Cache
tag + ? bits of Data

°Number of bits in Data cache Tag / Index /
Offset / Entry?

Block Offset (? bits)
Physical Page Address (36 bits)

Cache Index (? bits)Cache Tag (? bits)

V D Cache Tag (? bits) Cache Data (? bits)

1: 12 / 9 / 14 / 87 (Tag/Index/Offset/Entry)
2: 20 / 10 / 6 / 86
3: 20 / 10 / 6 / 534
4: 21 / 9 / 6 / 87
5: 21 / 9 / 6 / 535

CS61C L36 VM II (15) Garcia © UCB

Peer Instruction (3/3) Answer
°2-way set-assoc data cache, 64K/1K (210)
“slots”, 2 entries per slot => 9 bit index

°Data Cache Entry: Valid bit, Dirty bit, Cache
tag + 64 Bytes of Data

Block Offset (6 bits)
Physical Page Address (36 bits)

Cache Index (9 bits)Cache Tag (21 bits)

V D Cache Tag (21 bits)
Cache Data (64 Bytes =

 512 bits)

1: 12 / 9 / 14 / 87 (Tag/Index/Offset/Entry)
2: 20 / 10 / 6 / 86
3: 20 / 10 / 6 / 534
4: 21 / 9 / 6 / 87
5: 21 / 9 / 6 / 535

CS61C L36 VM II (16) Garcia © UCB

4 Qs for any Memory Hierarchy
° Q1: Where can a block be placed?

• One place (direct mapped)
• A few places (set associative)
• Any place (fully associative)

° Q2: How is a block found?
• Indexing (as in a direct-mapped cache)
• Limited search (as in a set-associative cache)
• Full search (as in a fully associative cache)
• Separate lookup table (as in a page table)

° Q3: Which block is replaced on a miss?
• Least recently used (LRU)
• Random

° Q4: How are writes handled?
• Write through (Level never inconsistent w/lower)
• Write back (Could be “dirty”, must have dirty bit)

CS61C L36 VM II (17) Garcia © UCB

°Block 12 placed in 8 block cache:
• Fully associative
•Direct mapped
• 2-way set associative

- Set Associative Mapping = Block # Mod # of Sets

0 1 2 3 4 5 6 7Block
no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

Q1: Where block placed in upper level?

CS61C L36 VM II (18) Garcia © UCB

°Direct indexing (using index and
block offset), tag compares, or
combination
° Increasing associativity shrinks
index, expands tag

Block
offset

Block Address
Tag Index

Q2: How is a block found in upper level?

Set Select

Data Select

CS61C L36 VM II (19) Garcia © UCB

°Easy for Direct Mapped
°Set Associative or Fully Associative:
• Random
• LRU (Least Recently Used)

Miss Rates
Associativity:2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block replaced on a miss?

CS61C L36 VM II (20) Garcia © UCB

Q4: What to do on a write hit?
°Write-through
• update the word in cache block and
corresponding word in memory

°Write-back
• update word in cache block
• allow memory word to be “stale”
=> add ‘dirty’ bit to each line indicating that
memory be updated when block is replaced

=> OS flushes cache before I/O !!!

°Performance trade-offs?
•WT: read misses cannot result in writes
•WB: no writes of repeated writes

CS61C L36 VM II (21) Garcia © UCB

Three Advantages of Virtual Memory
1) Translation:
•Program can be given consistent view of
memory, even though physical memory is
scrambled
•Makes multiple processes reasonable
•Only the most important part of program
(“Working Set”) must be in physical memory
•Contiguous structures (like stacks) use only
as much physical memory as necessary yet
still grow later

CS61C L36 VM II (22) Garcia © UCB

Three Advantages of Virtual Memory
2) Protection:
•Different processes protected from each other
•Different pages can be given special behavior
- (Read Only, Invisible to user programs, etc).

•Kernel data protected from User programs
•Very important for protection from malicious
programs ⇒ Far more “viruses” under
Microsoft Windows
•Special Mode in processor (“Kernel mode”)
allows processor to change page table/TLB

3) Sharing:
•Can map same physical page to multiple users
(“Shared memory”)

CS61C L36 VM II (23) Garcia © UCB

Why Translation Lookaside Buffer (TLB)?

°Paging is most popular
implementation of virtual memory
(vs. base/bounds)
°Every paged virtual memory access
must be checked against
Entry of Page Table in memory to
provide protection
°Cache of Page Table Entries (TLB)
makes address translation possible
without memory access in common
case to make fast

CS61C L36 VM II (24) Garcia © UCB

And in Conclusion…
°Virtual memory to Physical Memory
Translation too slow?
•Add a cache of Virtual to Physical
Address Translations, called a TLB

°Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well
°Virtual Memory allows protected
sharing of memory between processes
with less swapping to disk

CS61C L36 VM II (25) Garcia © UCB

Bonus slide: Virtual Memory Overview (1/4)
°User program view of memory:
•Contiguous
•Start from some set address
• Infinitely large
• Is the only running program

°Reality:
•Non-contiguous
•Start wherever available memory is
• Finite size
•Many programs running at a time

CS61C L36 VM II (26) Garcia © UCB

Bonus slide: Virtual Memory Overview (2/4)
°Virtual memory provides:
• illusion of contiguous memory
• all programs starting at same set address
• illusion of ~ infinite memory
(232 or 264 bytes)
• protection

CS61C L36 VM II (27) Garcia © UCB

Bonus slide: Virtual Memory Overview (3/4)
° Implementation:
•Divide memory into “chunks” (pages)
•Operating system controls page table
that maps virtual addresses into
physical addresses
• Think of memory as a cache for disk
• TLB is a cache for the page table

CS61C L36 VM II (28) Garcia © UCB

Bonus slide: Virtual Memory Overview (4/4)
°Let’s say we’re fetching some data:
•Check TLB (input: VPN, output: PPN)
- hit: fetch translation
- miss: check page table (in memory)

– Page table hit: fetch translation
– Page table miss: page fault, fetch page

from disk to memory, return translation
to TLB

•Check cache (input: PPN, output: data)
- hit: return value
- miss: fetch value from memory

