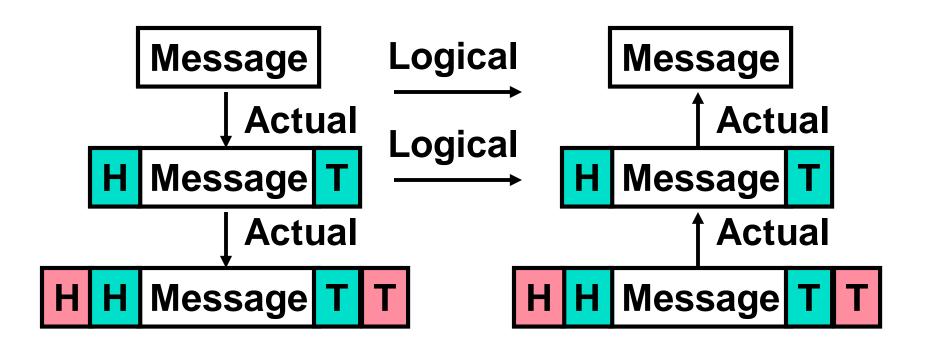
inst.eecs.berkeley.edu/~cs61c CS61C: Machine Structures

Lecture 39 I/O : Disks

2005-4-29


TA Casey Ho

Microsoft rolled out a 64 bit version of its Windows operating systems on Monday. As compared with existing 32-bit versions:64-bit Windows will handle 16 terabytes of virtual memory, as compared to 4 GB for 32-bit Windows. System cache size jumps from 1 GB to 1 TB, and paging-file size increases from 16 TB to 512 TB.

Ho, Fall 2004 © UCB

Protocol Family Concept

Physical

Ho, Fall 2004 © UCB

Protocol Family Concept

 Key to protocol families is that communication occurs logically at the same level of the protocol, called peer-to-peer...

...but is implemented via services at the next lower level

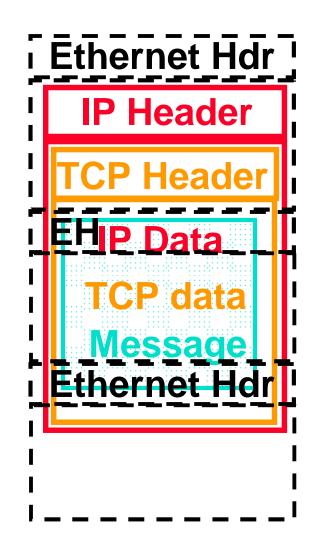
- Encapsulation: carry higher level information within lower level "envelope"
- Fragmentation: break packet into multiple smaller packets and reassemble

Ho, Fall 2004 © UCB

PDF created with pdfFactory Pro trial version www.pdffactory.com

Protocol for Network of Networks

- Transmission Control Protocol/Internet
 Protocol (TCP/IP)
 - This protocol family is the basis of the Internet, a WAN protocol
 - IP makes best effort to deliver
 - TCP guarantees delivery
 - TCP/IP so popular it is used even when communicating locally: even across homogeneous LAN



Ho, Fall 2004 © UCB

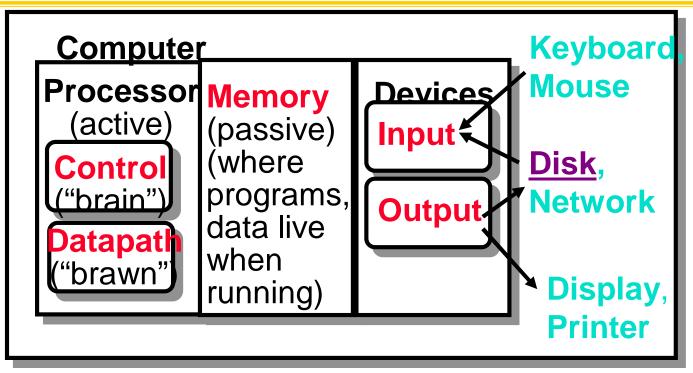
PDF created with pdfFactory Pro trial version www.pdffactory.com

TCP/IP packet, Ethernet packet, protocols

- Application sends message
- TCP breaks into 64KiB segments, adds 20B header
- IP adds 20B header, sends to network
- If Ethernet, broken into 1500B packets with headers, trailers (24B)
- All Headers, trailers have length field, destination,

Overhead vs. Bandwidth

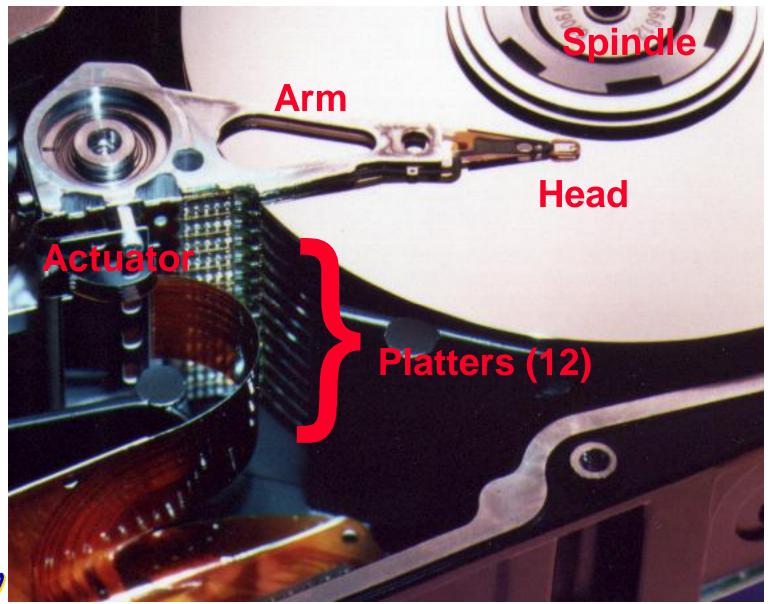
- Networks are typically advertised using peak bandwidth of network link: e.g., 100 Mbits/sec Ethernet ("100 base T")
- Software overhead to put message into network or get message out of network often limits useful bandwidth
- Assume overhead to send and receive = 320 microseconds (ms), want to send 1000 Bytes over "100 Mbit/s" Ethernet
 - Network transmission time: 1000Bx8b/B /100Mb/s
 - = 8000b / (100b/ms) = 80 ms


Effective bandwidth: 8000b/(320+80)ms = 20 Mb/s CS61C L40 I/O: Disks (6) Ho, Fall 2004 © UCB

Review

- Protocol suites allow heterogeneous networking
 - Another form of principle of abstraction
 - Protocols Þ operation in presence of failures
 - Standardization key for LAN, WAN

Magnetic Disks

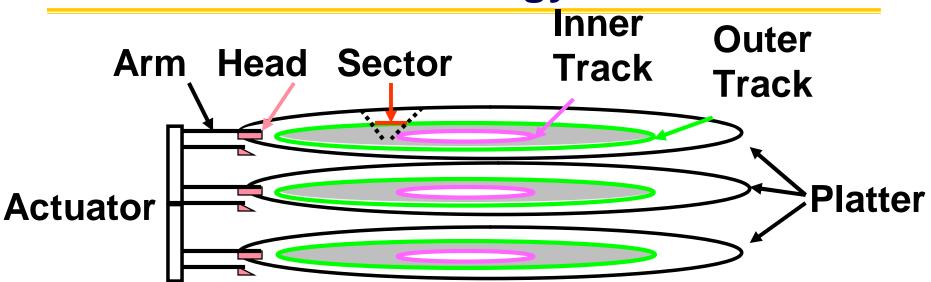


• Purpose:

- Long-term, nonvolatile, inexpensive storage for files
- Large, inexpensive, slow level in the memory hierarchy (discuss later)

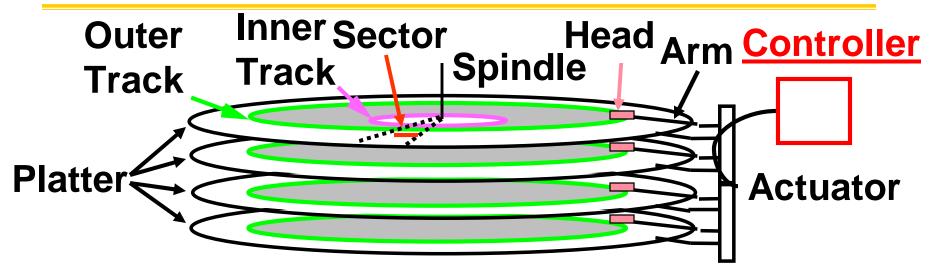
CS61C L40 I/O: Disks (8)

Photo of Disk Head, Arm, Actuator



CS61C L40 I/O: Disks (9)

Ho, Fall 2004 © UCB


Disk Device Terminology

- Several <u>platters</u>, with information recorded magnetically on both <u>surfaces</u> (usually)
- Bits recorded in <u>tracks</u>, which in turn divided into <u>sectors</u> (e.g., 512 Bytes)
- <u>Actuator</u> moves <u>head</u> (end of <u>arm</u>) over track (<u>"seek"</u>), wait for <u>sector</u> rotate under <u>head</u>, then read or write

Disk Device Performance

- Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead
 - Seek Time? depends no. tracks move arm, seek speed of disk
 - Rotation Time? depends on speed disk rotates, how far sector is from head
 - Transfer Time? depends on data rate (bandwidth) of disk (bit density), size of request

Data Rate: Inner vs. Outer Tracks

- To keep things simple, originally same # of sectors/track
 - Since outer track longer, lower bits per inch
- Competition decided to keep bits/inch (BPI) high for all tracks ("<u>constant bit density</u>")
 - More capacity per disk
 - More sectors per track towards edge
 - Since disk spins at constant speed, outer tracks have faster data rate
- Bandwidth outer track 1.7X inner track!

Disk Performance Model /Trends

- Capacity : + 100% / year (2X / 1.0 yrs)
 Over time, grown so fast that # of platters has reduced (some even use only 1 now!)
- Transfer rate (BW) : + 40%/yr (2X / 2 yrs)
- Rotation+Seek time : 8%/yr (1/2 in 10 yrs)
- Areal Density
 - Bits recorded along a track: **<u>Bits/Inch</u>** (BPI)
 - # of tracks per surface: Tracks/Inch (TPI)
 - We care about bit density per unit area Bits/Inch²
 - Called <u>Areal Density</u> = BPI x TPI
- MB/\$: > 100%/year (2X / 1.0 yrs)
 - Fewer chips + areal density

Disk History (IBM)

Data density Mibit/sq. in Capacity of Unit Shown Mibytes

> 1973: 1. 7 Mibit/sq. in 0.14 GiBytes

1979: 7. 7 Mibit/sq. in 2.3 GiBytes

source: New York Times, 2/23/98, page C3,

"Makers of disk drives crowd even more data into even smaller spaces"

CS61C L40 I/O: Disks (14)

Ho, Fall 2004 © UCB

Disk History

1989: 63 Mibit/sq. in 60 GiBytes 1997: 1450 Mibit/sq. in 2.3 GiBytes 1997: 3090 Mibit/sq. in 8.1 GiBytes

source: New York Times, 2/23/98, page C3, "Makers of disk drives crowd even more data into even smaller spaces"

Ho, Fall 2004 © UCB

Historical Perspective

- Form factor and capacity drives market, more than performance
- 1970s: Mainframes ▷ 14" diam. disks
- 1980s: Minicomputers, Servers Þ 8", 5.25" diam. disks
- Late 1980s/Early 1990s:
 - Pizzabox PCs
 3.5 inch diameter disks
 - Laptops, notebooks Þ 2.5 inch disks
 - Palmtops didn't use disks, so 1.8 inch diameter disks didn't make it

State of the Art: Barracuda 7200.7 (2004)

• 200 GB, 3.5-inch disk

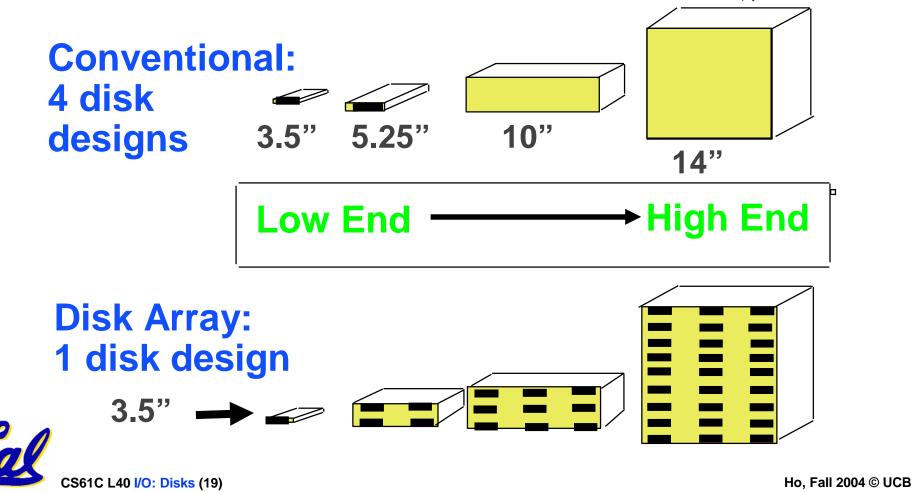
- 7200 RPM; Serial ATA
- 2 platters, 4 surfaces
- 8 watts (idle)
- 8.5 ms avg. seek
- 32 to 58 MB/s Xfer rate
- \$125 = \$0.625 / GB

source: <u>www.seagate.com;</u>

Ho, Fall 2004 © UCB

1 inch disk drive!

- 2004 Hitachi Microdrive:
 - 1.7" x 1.4" x 0.2"
 - 4 GB, 3600 RPM, 4-7 MB/s, 12 ms seek
 - Digital cameras, PalmPC
- 2006 MicroDrive?
- •16 GB, 10 MB/s!
 - Assuming past trends continue



Ho, Fall 2004 © UCB

Use Arrays of Small Disks...

- Katz and Patterson asked in 1987:
 - Can smaller disks be used to close gap in performance between disks and CPUs?

Replace Small Number of Large Disks with Large Number of Small Disks! (1988 Disks)

	IBM 3390K IBM 3.5" 0061		
Capacity	20 GBytes	320 MBytes	23 GBytes
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft. <mark>9X</mark>
Power	3 KW	11 W	1 KW 3X
Data Rate	15 MB/s	1.5 MB/s	120 MB/s <mark>8X</mark>
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s6X
MTTF	250 KHrs	50 KHrs	??? Hrs
Cost	\$250K	\$2K	\$150K

Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW, but what about reliability?

CS61C L40 I/O: Disks (20)

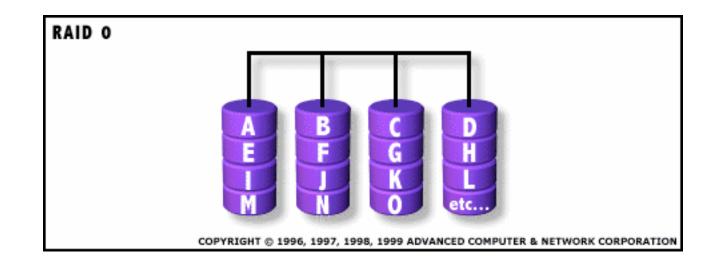
Array Reliability

- <u>Reliability</u> whether or not a component has failed
 - measured as Mean Time To Failure (MTTF)
- - 50,000 Hours ÷ 70 disks = 700 hour
- Disk system MTTF: Drops from 6 years to 1 month!
- Disk arrays too unreliable to be useful!

<u>Redundant</u> Arrays of (Inexpensive) Disks

- Files are "striped" across multiple disks
- Redundancy yields high data availability
 - <u>Availability</u>: service still provided to user, even if some components failed
- Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - **Þ** Capacity penalty to store redundant info
 - **b** Bandwidth penalty to update redundant info

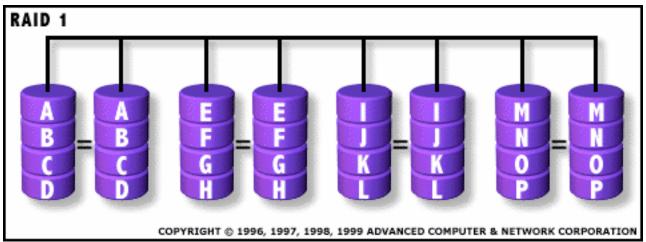
Berkeley History, RAID-I


• RAID-I (1989)

- Consisted of a Sun 4/280 workstation with 128 MB of DRAM, four dual-string SCSI controllers, 28 5.25inch SCSI disks and specialized disk striping software
- Today RAID is > \$27 billion dollar industry, 80% nonPC disks sold in RAIDs

"RAID 0": No redundancy = "AID"

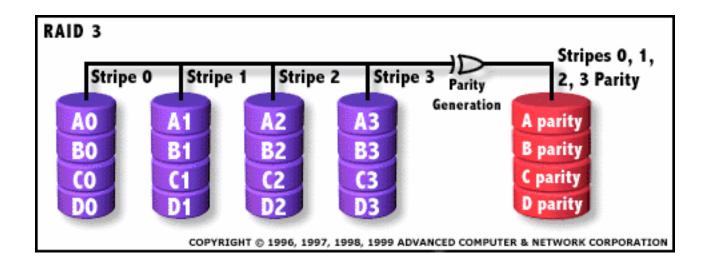
- Assume have 4 disks of data for this example, organized in blocks
- Large accesses faster since transfer from several disks at once



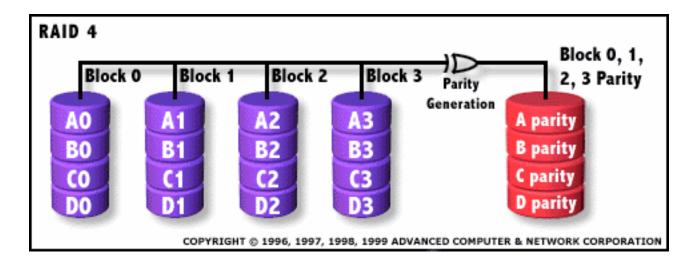
This and next 5 slides from RAID.edu, <u>http://www.acnc.com/04_01_00.html</u>

CS61C L40 I/O: Disks (24)

Ho. Fall 2004 © UCB

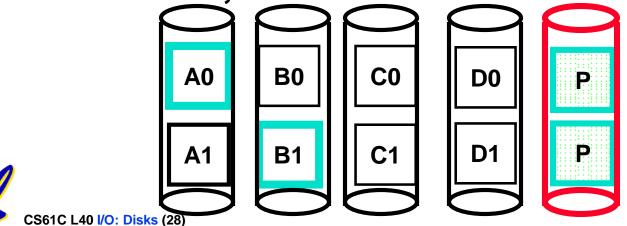

RAID 1: Mirror data

- Each disk is fully duplicated onto its "mirror"
 - Very high availability can be achieved
- Bandwidth reduced on write:
 - •1 Logical write = 2 physical writes
- Most expensive solution: 100% capacity overhead

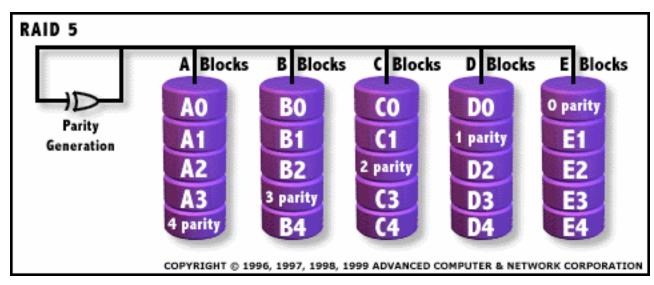

RAID 3: Parity

- Parity computed across group to protect against hard disk failures, stored in P disk
- Logically, a single high capacity, high transfer rate disk
- 25% capacity cost for parity in this example vs. 100% for RAID 1 (5 disks vs. 8 disks)

RAID 4: parity plus small sized accesses



- RAID 3 relies on parity disk to discover errors on Read
- But every sector has an error detection field
- Rely on error detection field to catch errors on read, not on the parity disk
- Allows small independent reads to different disks
 simultaneously


Inspiration for RAID 5

- Small writes (write to one disk):
 - Option 1: read other data disks, create new sum and write to Parity Disk (access all disks)
 - Option 2: since P has old sum, compare old data to new data, add the difference to P:
 1 logical write = 2 physical reads + 2 physical writes to 2 disks
- Parity Disk is bottleneck for Small writes:
 Write to A0, B1 => both write to P disk

Ho, Fall 2004 © UCB

RAID 5: Rotated Parity, faster small writes

- Independent writes possible because of interleaved parity
 - Example: write to A0, B1 uses disks 0, 1, 4, 5, so can proceed in parallel
 - Still 1 small write = 4 physical disk accesses

- 1. RAID 1 (mirror) and 5 (rotated parity) help with performance <u>and</u> availability
- 2. RAID 1 has higher cost than RAID 5
- 3. Small writes on RAID 5 are slower than on RAID 1

Ho, Fall 2004 © UCB

ABC

FFF

FFT

 $\mathbf{T}\mathbf{T}\mathbf{T}$

 $\mathbf{F}\mathbf{T}\mathbf{T}$

TFF

 \mathbf{TFT}

ͲͲፑ

ጥጥጥ

2:

२.

5.

6:

7:

8:

"And In conclusion..."

- Magnetic Disks continue rapid advance: 60%/yr capacity, 40%/yr bandwidth, slow on seek, rotation improvements, MB/\$ improving 100%/yr?
 - Designs to fit high volume form factor
- RAID
 - Higher performance with more disk arms per \$
 - Adds option for small # of extra disks
 - Today RAID is > \$27 billion dollar industry, 80% nonPC disks sold in RAIDs; started at Cal

Ho, Fall 2004 © UCB

Administrivia

Nothing except final approaching

Ho, Fall 2004 © UCB