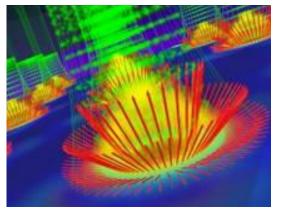
inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures

Lecture 43 Summary & Goodbye


Lecturer PSOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Future? Spintronics! ⇒

Current silicon chips

carry info with electron *charge*. This idea has them carry info with their <u>spin</u>. Lower power, higher processing
 speeds, and quantum computing!

www.physorg.com/news3998.html

CS61C L43 Summary & Farewell (1)

Garcia © UCB

Cool Stuff...the videos before lecture

SIGGRAPH Electronic Theatre

www.siggraph.org/publications/video-review/SVR.html

\$40/video for ACM Members

SIGGRAPH Conference in LA!

• 2005-07-31 ⇒ 2005-08-04 www.siggraph.org/s2005/

CS61C L43 Summary & Farewell (2)

Review

- Benchmarks
 - Attempt to predict performance
 - Updated every few years
 - Measure everything from simulation of desktop graphics programs to battery life
- Megahertz Myth
 - MHz ≠ performance, it's just one factor

CS61C: So what's in it for me? (1st lecture)

Learn some of the big ideas in CS & engineering:

- 5 Classic components of a Computer
- Principle of abstraction, systems built as layers
- Data can be anything (integers, floating point, characters): a program determines what it is
- Stored program concept: instructions just data
- Compilation v. interpretation thru system layers
- Principle of Locality, exploited via a memory hierarchy (cache)
- Greater performance by exploiting parallelism (pipelining)

Conventional Wisdom (CW) in Comp Arch

- Old CW: Power free, Transistors expensive
- New CW: Power expensive, Transistors free
 - Can put more on chip than can afford to turn on
- Old CW: Chips reliable internally, errors at pins
- New CW: \leq 65 nm \Rightarrow high error rates
- Old CW: CPU manufacturers minds closed
- New CW: Power wall + Memory gap = Brick wall
 - New idea receptive environment
- Old CW: Uniprocessor performance 2X / 1.5 yrs
- New CW: 2X CPUs per socket / ~ 2 to 3 years
 - More simpler processors more power efficient

Massively Parallel Socket

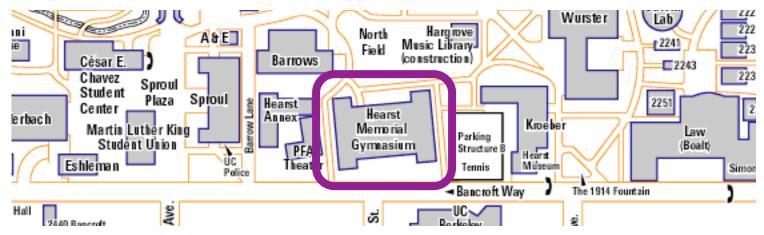
- Processor = new transistor?
 - Does it only help power/cost/performance?
- Intel 4004 (1971): 4-bit processor, 2312 transistors, 0.4 MHz, 10 μ m PMOS, 11 mm² chip
- RISC II (1983): 32-bit, 5 stage pipeline, 40,760 transistors, 3 MHz, 3 µm NMOS, 60 mm² chip

4004 shrinks to ~ 1 mm² at 3 micron

- 125 mm² chip, 65 nm CMOS
 = 2312 RISC IIs + Icache + Dcache
 - RISC II shrinks to ~ 0.02 mm² at 65 nm
 - Caches via DRAM or 1 transistor SRAM (www.t-ram.com)?
 - Proximity Communication at > 1 TB/s ?
 - · Ivan Sutherland @ Sun spending time in Berkeley!

20th vs. 21st Century IT Targets

- 20th Century Measure of Success
 - Performance (peak vs. delivered)
 - Cost (purchase cost vs. ownership cost, power)
- 21st Century Measure of Success? "SPUR"
 - Security
 - Privacy
 - Usability
 - Reliability
- Massive parallelism greater chance (this time) if
 - Measure of success is SPUR vs. only cost-perf
 - Uniprocessor performance improvement decelerates



- Need to revisit chronic unsolved problem
 - Parallel programming!! (Thanks again Andy)
- Implications for applications:
 - Computing power >>> CDC6600, Cray XMP (choose your favorite) on an economical die inside your watch, cell phone or PDA
 - On your body health monitoring
 - Google + library of congress on your PDA
- As devices continue to shrink...
 - The need for great HCI critical as ever!

Administrivia (1/2) : Final Exam & Review

Final Exam: SAT 2005-05-14, 12:30-3:30pm in 220 Hearst Only bring pen{,cil}s, two 8.5"x11" <u>handwritten</u> sheets + green. Leave backpacks, books, calculators, cells & pagers home!

Dan's Extended OH Tuesday 2005-05-10 @ noon-3pm in 795 Soda (overflowing into 751 Soda if too full)

Administrivia (2/2) : Become active!

- There IS discussion this week (no lab)
 - Make sure to talk to your TAs and get your labs taken care of.
- If you did well in CS3 or 61{A,B,C}
 (A- or above) and want to be on staff?
 - Usual path: Lab assistant \Rightarrow Reader \Rightarrow TA
 - Fill in form outside 367 Soda before first week of semester...
 - I (Dan) strongly encourage anyone who gets an A- or above in the class to follow this path... I'll be teaching 61C in the fall!

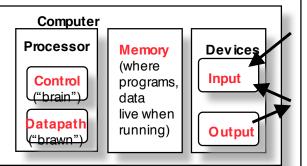
Taking advantage of Cal Opportunities

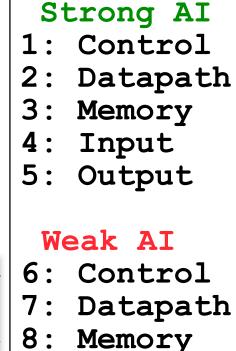
"The Godfather answers all of life's questions" – Heard in "You've got Mail"

- Why are we the #2 Univ in the WORLD?
 - So says the 2004 ranking from the "Times Higher Education Supplement" • Research, reseach, research!
 - Whether you want to go to grad school or industry, you need someone to vouch for you! (as is the case with the Mob)
- Techniques
 - Find out what you like, do lots of web research (read published papers), hit OH of Prof, show enthusiasm & initiative

CS98/198 Opportunities Fall 2005

- GamesCrafters (Game Theory R & D)
 - We are developing SW, analysis on small 2-person games of no chance. (e.g., achi, connect-4, dots-and-boxes, etc.)
 - Req: A- in CS61C, Game Theory Interest
- MS-DOS X (Mac Student Developers)
 - Learn to program Macintoshes. No requirements (other than Mac, interest)
- UCBUGG (Recreational Graphics)
 - Develop computer-generated images and animations. Req: 3D experience, portfolio





Strong or Weak AI? Strong AI: Machines that act intelligently have real, conscious minds...sentience Weak AI: Machines can be made to act as if they were intelligent.

In the future, what'll be the most important computer component?

CS61C L43 Summary & Farewell (13)

- 9: Input
- 0: Output

Peer Instruction Answer

 "Forget cloning. Forget TVs on your wrist watch.
 The biggest invention of the next 100 years will be the ability to directly connect your brain to a machine. – Dan Garcia

- A macaque monkey at Duke University can already control a robotic arm with thought.
- DARPA is extremely interested in the technology for mind-control robots & flying
- Virtual Reality could be achieved with proper I/O interfacing...

www.popsci.com/popsci/medicine/article/0,12543,576464,00.html

CS61C L43 Summary & Farewell (14)

Penultimate slide: Thanks to the staff!

Thanks to Dave Patterson

for these CS61C notes...

• TAs

- Head TA
 Andy Carle
- Steven Kusalo
- Danny Krause
- · Casey Ho

Readers

- Michael Le
- Benjamin Mellblom
- Mark Whitney

The Future for Future Cal Alumni

- What's The Future?
- New Millennium
 - Internet, Wireless, Nanotechnology, ...
 - Rapid Changes in Technology
 - World's Best Education
 - Never Give Up!

"The best way to predict the future is to invent it" – Alan Kay

The Future is up to you!

